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INTRODUCTION

In the design of space flight trajectories and hardwera i1t is necessayy
to detemmine the answers to questions of the following nature:

In a nominel operation, how accurately will the spacecraft trajectory
or certain teminal variables be determined from tracking, as & function
of time throughout the flight?
What is the sensitivity of tihis nomipal accuracy to tae muxmter zad
location of tracking stations, the quantities measured, observation

~ noise models, data biases, etc.?
What is the effect of uncertainties in physical constants and station
locations on the nominal accuracy? '
¥What is the efiect of a midcourse correction on the orbit determination

accuracy?

The Tracking Accuracy Prediction Program (TAPP) has been designed speciﬁn
cally for the statistical analysis of such pre-flight oxrbit determination

| problews (as distinct from the operational processing of data to determine a

particwlar orbit cnce a flight has occurred). In developing che program,
emphasis has been placed on computetional speed, capability of handling &
wide range of problems, and ease of future progrem modification. To these
ends, the following features have been included: For speed <trajectory com=-
putation is based on a three-dimensional, multi-center, patched conic model
so that no integration is required.* In addition the ephemerides of celestial |
bodies are computed from formulas rather than by table look-up, end frequent
tracking observations are interpolated from a basic mesh of time steps.

¥ Ixtensive comparison at STL of the results of such models and the results of
"exact" iutegrating programs has shown good agreement for both lunar and

- interplanetary flights. ., -



The orbit computeticiial scheme is completely gemeral in that it cen ¢ 28l
with all types of conics with essentialliy no alterations in the formules.
No difficulties are encountered in such troublesome ceses as parabolic,
near parabolic, circular, and zero inclination orbits. This flexibility 18
made possible by the use of the Cartesian coordinates at a Iixed epoch as the
oxbital elements along with Herrick's unified parameters (Reference 2) for
f£inding the spacecraft position velocity vector on the orbit.

A variety of observation types may be simulated, including range,
range rate, hour angle, declination, elevation, and azimuth from earth vased
stations; planetary diemeters and star-planet sightings from the spacecraft;
and range and range rate Jrom e lunar-bvased station. Rise and set times are
computed, sllowing the user to specify the olservations to be teken by con-
venient "rules" and placing the burden of generating the observation times
on the program, A number of noise models and station locatlons are pre-siored
in the program and maey te specified by & code number. Other models and stutio:
locations may of course bYe entered as inpuv%: quantities. The effects of un-
certainties in station locetions, physical constants, and biasea may be
studied, Up to 25 orbital elements and non-orbital parameters msy be solved
for, and the effect of executing a midcource maneuver may be simulated. A
choice of five printout formats is provided covering trajectory variables,
midcourse quantities, and tracking metrices, and varying in the amount and
type of detail printed ous.

The progrem described in this report (TAPP Mod I) was designed for the
tracking analysis of flights containing a single midcourse correction. An
extended version (TAPP Mod II) is under development which will allow simulatic
0 » midcourse and terminal guidance corrections. This latier program
employs a& Monte Carlo method of analysis and is intended for combined trackin
guidance "mission enalysis", including studies of midcourse fuel requirements:
relative efficiercies of guldance logics, and the study of adaptive correctior
systéme. ' ’ ‘

—
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This report is a revision of an earlier document: "Computer Progrem

Guide, Tracking Accuracy Prediction Program (TAPP MOD I)", by L. %Woug, .
A 8. Lin, M, C. FuJisaki, snd O. Senda. It bhas been modified to reflect

. ohangaes ia the prograa and to eliminate errora.

The first part pr the report presents a functional block dlagrax of the
program and includes @ general description of each ma,jor program block. Tie
aecond part is & seriss of appendices which describe the input requirexants,

'output options, and print formats, and give &1l equations uged in the variaus

program 'blocke.
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CENERAL PROGRAM DESCRIPTION

In the computation of orbits, 41t is essumed that an orbit is determined
as a function of time from the equations ¢f motion if the combined initisl
o! is given at one inst nt; e In prastice
x, is never known exactly bui can be estimated from observations made along

ponition and velocity vector, x

tne orbit., Such observations are subject to random noise which introduces

iluctuations inte the calculated values of X,

The object of the present program is the evaluation of orbit determination
" accuracy on the basis of a given noise model and the details of observations
along the orbit. For our purpose, the accurany criterion is the covariance
matrix of a set of variables which ‘are known functions of X, Usually these

" yariables are taken to be the impact parameter vector with respect to a target
planet or in the case of elliptic motion, the spacecraft position vector at a
fixed. time. |

In order to find the covariance matrix referred to abova, the metﬁod of
least squares is used to estimate the initial position and velocity vector,
Xy from the dbserv&tions. The‘covariance matrix for X, is obtained froq
the weighted least squares matriceé. The covariance matrix for functions of
x_  can then be obtained by a linear. transformation. [ That 1is, gxcept for

°
effects of physical constents which will e discussed later],

Briefly, the tasks required for finaing the covariance metrix of impact
errors are outlined in block diagram form in Figure 1. '

In addition to the primary purpose of tracking accuracy evaluation, the
program way sometimes be used t» compute from x »

a) the approximate spacecraft trejectory and a set of auriliery
quantities given in-Appendix 10,

" 9) the spacecraft rise and set times from a mumber of stations over
a a time spen of interest, '

‘6)  target semsitivity coefficients for midcourse maneuvers at
: prescribed points in the orbit, ‘

’
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" d) the progran may also be used to simulate midcourse maneuver errors
from & given set of sys*.ms performance paraiieters anc prasgrﬁbed
tracking data.

Mb shall now describe the functione of the major program blocks:

J) Orbit and Ephemcris Computation

: The trajectury of e spacecraft is usually found by solving the equations
?of motion including all pertinent force terms. To enhance the apéed of orbi%
jcomyuiitiun, Goviations from Kepler motion are neglected in the 1resent
ginstance, 20 thatl all trajectories are conics For cases in which there is
-6 8equance of primary atiracting centers, a succession of conics ars matched
together at thé boundaries of the spnere of aciion for the various bodies.¥
-8Buck. a procedure removes the necessity for any integration of the equations
of motion. The conputAtion scheme is given in Appendix 1.

In addition, the ephemerides for the pertinent celestial bodies are
computed from Képler furmulaa-uaing meen orvital elzments which include
secular var;ation terms bLut not: periodié ones. A provision is made to accept
"osculating elements at & fixed epoch if higher accuracy is required. However,
.1n most instances, the tracking accuracy should not be critically affcctad Ly
small deviations in the pozitions of the celestial bodies fromtheir actual .
position. .

2) Search Routine . .

One requircd program input is & set of initial orbit conditions ylelding
'approximately the desired final conditions at the target body. Theie input
conditions vill normally be obtained from one of the standard lunar or

interplanetary trajectory design programs ava’lable. To allo. for differences
 in computational models used by TAPP and other programs, & search routine ie
provided in TAPP to achieve & required set of final conditions. This is
" accomplished by a differential correction process on the initial conditions. -
_Given an initial vector, x,, vbich ylelds a reesongbly close velue of the :

. emy

A

* See Appendix 6, Page T0.
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required fine' veator bH; she roustine com~utes the differentiel sosfficlent

o |
watrix, {%i-; , and finds the correctlion vector
: 0/

%

8X = & " rb (required) - b {com uted)]
o ax L q \comp

o

The new veluea X, =%, + (3] x, ers used to compute the new values bl. The

process is repeated until the required conditions are achieved. The search
may be carried out by varying che injecticu conditions 2t the earth.or the -
velocity at infinity on the escaps hyperbola. Further details ore given in
Appendix 5. . '

3) Rise and Set Times

. To insure tnat the simulated observation times correspond realistically
with the given orbit and tracking stavions, visibility timee from each station
are computed over the period of interest. .

This 18 accomplished in the progrem by computing the elevation angle, E,
from the tracker at prescribed intervals over .the span of tracking. In
perticular, we compute

‘ - Rs'p _
B = gin E ~ sin.rb -~’R8!‘p, - B8iu Yo

R is the position vector of the station
-~ P is the vector from station to gpecearaft

Y 18 the minimum elevation before visibility is seid to occur
{usuelly different from zero)

The epacecraft is visible from a given station if d » 0. The rise-set inter~
vais are found by interpolating for the times at which € changes sign.

In the case of lunar and dcep space vehicles, the spacecraft has 4 slow
anguler rate with reapect % the earth afier the initfal day or tr. Since

¢



the station coordinates have a pericd of one slderes. day, the rise-set
times on the nrth day are reascnable first approximations to the. rise-set
times on the =n + ist day. This fact is used to speed the deterwination of
rise and aef’times aver a long trajectory time apan. '

In anticipation or lunar satellites, the rise-set rcutine also finds the
occultation times of the spacecraft by the moon. Only visible, non-occculted

times are used in simulated observations.

4)  Radar Derivatives

The radar derivatives are the regression coefficients appearing in the
least squares estimation of ¥, Tn the present progrem they are obtained
by use of the differentiation chain rule. Let R, be the ith radar
observation; ¢ the time of the observation; x(t) the position and velocity
at tize t;. and x, the value of x at the epoch, to;*then in matrix notation,

oR
. 5;2 is
o
\ .
3R, ) _ [ 3Ry [3x
% ) %
vhere -
{
| 3Ry | o
5| s the {1 x 6) matrix of Gerivatives of R, with respect
\ to x(t). It is obtained directly from the definition of
R,(x) by differeatiation. n
%ﬁ— is the (6 x 6) variational matrix for the change &x(t)
°/  aue to an initial increment B x . '
Gince conic formulas are used to appro:éimate the trajectory, %E- is obtained
. l (o) .
by differentiation of the Kepler formmlas. The matrix %‘- is given in
L] aR o
Appendix 1 and the quantities '6-371.) for the varioua data types are tabulated

in Appendix 3.

/ .% For 1llustrative purposes, we are considering x_  t0 be the inttial conditio
vector. However, X, may, in general, include pmrgica&. constanta elements as

vell.

n
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" where (@) is now to be considered as a matrix and x_ corresponds to the a,.

fm}, Foreation of the A Matrix

Each row of the A matrix consists of the coefficients of one equation

of condition
OR = al Aal + aa Aaz + see a£ Ast.n

where the &, ere the variables t< be adjusted, (e.g., injection conditions,

nhyeical constants, station location, data biases, etc.). The Cti are the
coefficients which make up & row of the A matrix. This section deals with-
the formation of the A matrix when initial conditvions, dynamical constants
such as mass of the sun, non-dynamical constants, such as speed of light or
station location errors, and data biases are to be "sdjusted” (i.e., fitted

to the equatious of conditions in a least square sense). In general,

o - (&) -8) &

o} o

o i

A

As a specific example, let us cousider one case of constructing such an
A matrix.
1" r "
Let ‘the symbol  { } mean "a set of size".
" Let X, be the initiai conditions. X, = {6}

Iet p be the other dynamical constants. u = {p}

(e.g., mass of sun, msss of erith)
Let A Ybe the non-dynamical constants. A m [‘ q]
-
(e.g., station uncertainties, .speed of light).

Let R be the set of unbiased observations from non-biased
station location R = {,L}



The A matrix ls then

A =
Y
A =
vl
voae bw‘"'
i ]
v ‘ww.
/

-——

St m—— W mw = . -

. Let R}‘: be the set of biamsed coservations from non-blased

statior locations = [m1

g o
Lat RA be the set of non-biased observations from biased
station locetions { 91

let RC be the set of bimsed observations from biased station

locdation R

Total number of variables

\
{=
)

Tota}. number of observations

=15 = L(+m+O+ 0

:m N = 6+p+q+m

formed by
732 N
{9R )
:(bx (x 6 (O),( xq (O),(x m{ _ |
.' . ! i{% } ..b_x_
o l
. . ‘ ’\ o] \
ha] (., . @ . | °*8
K rnx b « =
g ! (0) (0)
: ﬁ' (.a.l.?.é‘, (Q) ‘ ax 6
N\ jgx6 iauq ®xn!
{'aR .\ /BRC\ . (0) X 6 (o)
—a'x_g: gx_ (l)r xm -
Frrx6 T irxg =
. Where % n;ee.ns the identity sguare matrix.
oR) 3 ) EARr )
%) oKy, tox, lomy, X4
\ / \ O 0 x6 ! ‘'xp
(P5) 'yl Lohr
(% } | axg OX oM ' mxq
SR AN x 6 U P
!"aﬁ - m 4 ‘”)'BR o L
l_é\ lﬂ_ ! }.,....éi b_}_(_: ] .'lﬁ
\X \axo','e i \0x  Ok/g y o Mo xq -
LAWY 1354 o g'i’i‘&'} -
1‘&_ 3¥0/r x 6 W% O x P "c')‘f rxq

©)



5%) Normel Mucrix

Let R be the vector consisting of all the individual observations, Ri'
‘‘ne elements of the matrix A = %5—} are formed in accordance *..th a
o

prescribed set of rules which dictate the type and frequency of the simulated
tracking data. The normal matrix is then simpliy

L2 e

. e

sk ' /3R
A'VA = e W| =——
&) &)

where & prime denotes transpose, and W ie the diagonal matrix of final
weights assigned to the observatiors. W 1s also computed in accordance

with a set of rules which are given in Appendix 8.

6) Trecking Accuracy Output

{or some appropriate sube

The covarieance matrix of the impact vector
stitute) is the criterion of tracking accuracy. ™o elaborate on its com=-

putatior, we define the notations:

R - m vectcr of actual observations including noise.
X,; = D vector of true ortital parameters to be estimated.
X, - initial estimate of X4

P = q vector of parameters (usually physical constants) which
affect tne velues of the computed observations but which are
not being estimated. "

R = R(xo, p) - m vector of computed values of the observables
based on the initial values, Xy and p. ‘

~ covariance matrix of the initial estimate, Xy

A, - covariance matrix of the vector p (assumed given).

ey LN , et .- o



oR

A = m X n matrix of partiel derivetives, (532—) .
. ‘ S

)3 « m X q matrix of partial derivatives, ’ g-g— .

W - m x m dilagonal matrix of final least squares weights.
In most of the following, we ebsord VW intc the A and P matri/ces', i. e.
A'WA — A'A . WA — A '
A'WP — A'P Wp — P
In performing the least squares fit, we hold the vector p fixed but include
the effects qf its uncertainty in computing the covariance matrix of iupact
exTors. In general, the p vector will include quantities such as mass .£

the earth, moon, station location, velocity of light, etc. The errosa in
Xys Py and the noise on the observations are assumed to be independent of
each other for the present.

If the assumed values of p coincide. with the true values, Py thea the
least squares estimete of X, 18 the value x;  vhich minimizes the wveighted
sm . - . . . .-

A ‘ ' A ‘ )
3 - - - M - - { - '
8 [R R.(xo, pt) A (xls xo)] ‘w [R R (xo, pt)' A (%, =%

If in addition X is an a priori estimate of x with covarience matrix I,

then the combired least squares and a priori estimate, SEO » is obtained from
the equation* ' ! : '
: ) : a | . | .
. X, = X +KA [R-R(xo, pt)] R ‘ (1)

.1"1 : ' : .
. K = (AAs+T,)7) | ' '

* See footnote on next page

r
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A sacll increment ¥p = p o P will yield a slightly different estimate, F o’
vhere ' '

':Eo- x, + KA' [ﬁ-R(xo,p)-Pﬁp] (2)

Pal
It a&o-xo “X,, @ndBx =X - X, ., W obtein from (2)

A A 0 ’
ax° - on + KA' [R « R (xot’ pt) 5A6x° - P _bp]

. o | (3)
= K[a' or - AP sp 4Tt ek ]
o °
m previous page : |
I ro’l =0 (noa priori knowledge), the estimate of x,, reduces to
Xig° vhere - |
.lt .
X = %+ (AA) T A [R - R (x, pt)] (1a)

which 18 the usual formula based on & least squares criterion. - Equation (1)
combines the a priori estimate with the leas’ squares estimate, all into one
operation. As shown in Reference [1] » 1t 18 equivalent to finding the least
squares fit as in (la), and then cumbining with the a priori estimate in
accordance with the formula '

el . .
-~ -l -l =1 -1
X, = [An. + T, ] [Als Xig+ Ty xo] (1v)

where A is the covariance matrix of x The methods are equivelent and

ls 18’

' the covariance matrix of 20 - 48 éiven by the first term of (4) 4if one assumes

that there axr< no errors in p.

13



The covariance matrix of the estirate is

Ay = ERTRT - K {J + AT PA P'A] K (%) -
S m A NAep -t
= + I‘o (5)

where the bar denotes an ensemble average and Ap is the a priori covariance
matrix of p; N is the product of the diagonal matrix of the variances c¢n the
noiee and the weighting matrix W. The matrix, A, always has included in
it the factor (W ; otherwise en sdditional factor of W would sppear in (5)

The differential errore in the impact vector, b = b (x , P)are related
lmearly to bx aml &p. We have !

.lﬁb - R.G‘io + udp -

where

Yy = = KA'P .

- The covariance matrix of b is

Ab = 5b 8b' = (2 85‘(0 + ubp) (A 6’20 + uop)!

= AKIKA + (u+ Av) A (w+av) - - (6)

.X and i are the usual explicit partial derivatives of b with respect t»
N and p respectively. 8b = M8p 1s an additional crror temm 1n b due to
e erxor in R, arising from an mcrmental change bp. .

1
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Ab « B0 8 48 a3x3 matrix whose. upper left hand 2 x 2 is given by .

Equation (4) 1v the formula for finding Ab when 8xo and Gp. are
independent. Since A.D is the criterion which measures the tracking -
accuracy, much of the remainder of this write-up deals with the details
and options perteining to its computation from hypothetical observations.

In Appendix 4,b is shown to be a vector consisting of the two com-

ponents of the miss vector, m = :l and the total flight time, o
_ 2

m, and m,, define a plane which will be called the impact paramever plane. .

CRARERE—— . [ A

' . «
Am ‘w 8Smom , We rewrite this as

o 2 .
l-“l POy 02
A = :
2
. l_""l“a 9

(1

. .
The quadratic form &m Amlam = conetant describes a dispersion ellipse of

‘constant probability in the (ml’ ma) ‘plane. Am may be diagonalized by means '

K of an orthogonsal, transfqmation to riew variables M whexe

) - M = Un
80 that
. ! 2
' , Xlo
by = UAmU - 2 and, - (8)
0 N
' o2 + % + (az.'z)z (1 ‘2)
M e 2122 7T TP
)a 2 ) ’

"~ 15



U 4is a rotation from the m, axis to the mejor axis of the dispersion
ellipse. The angle of rotation is © where (aseume g, > 0'2)

m,
2pa, 0,
i 1 172
Ou 5 tan -3 (9)
Ul - 02

The quantities Ay i\M, and ¢ are computed et various stages of the simu-
lation as an indication of the tracking accuracy.

7) Midcourse Maneuvers

Arother use of the progrem 1e to similate the errors of a midcourse
velocity correction., This is done by supplementing Ab with an error
covariance matrix due to the imperfect execution of the maneuver. Since
the maneuver syatem errors and the tracking noise are assumed to be inde-
pendent, the covariance matrices from the two sources add directly. The
program may be instructed to perform either a hypothetical or.an actual
maneuver. ' '

The difference between them is that in the first case the correction
velocity errors are 'not propagated into the future. Their effects on A.b
are computed at the time of the hypothetical maneuver and are dropped for
further calculations. The obJject is to display the effects on A'b of the.
meneuver errors at various points along the orbit as the amount of tracking
and the error coefficlents vary in time.

In contrast, the simulation of an actual midcourse implies that the .
maneuver errors are permanently implanted in the orbit as they always are in .
real life. All computations of A, after the maneuver will have included ia
them the errors arising from the performance of the meneuver. In both
chéea ve assyvme that the mean of the midcourse v .locity magnitude 1is zero

16



80 that the orbit remains unaltered from the nominel even though the

.. erroys are added on. This is a valid procedure if everything is linear,
i.e. the error coefficients do not change rapidly in the vicinity of the
nomirel. The program may be required toc perform a series of hypothetical
manevvers but only one actual one at this time., #

a) Hypothetical Maneuvers (abbreviated hm)

Usually, & sequence of hypothetical maneuvers are called fcr along
an orbit. To illustirate the effect at the ith

Moy

A ai " covariance matrix of b Just after the ith hm. -

A e covariance matrix of velocity errors due to imperfent

R
int, use the symbo

PO
covariance motrix of b Just prior to the ith hm.

execution of the required maneuver. See Appendix T.

A, is a 3 x 3 matrix but may be used as a partitioned 6 x 6 -

0 0
matrix Ae = (0 Ae) '. |
X, = (ri, Vi) - the spacecraft position and velocity vector with
respect vo0 the force canter at t T the time of the ith hm.

A, = covariance matrix of x, due to tracking

X -~ yposition and velocit, at the initial. epoch, to’ of the phase
during which the maneuver occurs :

_ Ao "= covariance matrix of x o due to tracking only

A straightfcerwerd way of computing Auis to update the epoch to the
‘ . b 3o |’
ith hm; compute Ai_ due to t?acking, Abi is Just Ab:l. n (&; A 3;1.) .

]

i -

. % TAPP Mod II has a multiple midcourse maneuver capability.

17



a1 . Bo fraque
Aai is found oy replacing A { by A gt Ae in Ab 4 Kovever, frequent updating

involves some tedious matrix manipulstions if physical conrtants areé involved.
A eomewhat simpler scheme is used for hmn's in the present program by keeping

the epoch at to’ At t 4 compute

X 13x \'
A - 9) A |
oi (3‘\’!:4 < ( v ) .

(o]

»w]

after which

3o ® V(i) | Y
Mag = Mot +(7§r Poi (a::;) - (&“}v"o”‘oi) (sse;)

(neglecting physical conatant errors in this case)

: Bx ox ]
- i
For computatiqnal purposes, 5;,-; is obtained from (5-% ‘in which X, » (ri, v )
i.00 ‘
o -
-1 on
) I | R S
xi 5x°
|

b) Actual Maneuvers

After an ectual maneuver, tlie epoch ic moved to the time of the
maneuver. Calling the new poinv (to , xo) with a priori covariance matrix A,

then

ob
A (ssr

» |
v |3

o

9

18
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B —

If more %“racking édata is edded alter to, then the effects cf the new

dava can be incorporated Into the covariance matrix of x o by the formula

KO « KJK

-1

—

.
i -l [
K = L(Ab + Aé) + A A

| S—

J' = A' N A+ (A°+ Ae)'l

Al and Nl are quantities referring to the new data having meanings which

correspond Y0 A and N 4n {(5). The covariance matrix for b 1is then
simply ‘ |

If physical constant uncertainties are considered, the situatioa
becomes more involved and will be dealt witb in Appendix 6.

~
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APPENDIX 1 ORBIT COMPUTATIGN AND VY JTIONAL EQUATIONS

This appendix tabulates some expr....ons for the derivatives of position
and velocity on Keplerian conics with reapect to the initial. conditions, Of
the many sets of parameters which may be vsed to represent the orbit, the set
chosen ls the one given by the initial cartesian components of position and

velocity of the point mass with respect to the dynamical center,

‘The method of represcnting the orbit is completely general. in that it
includes elliptic, parabolic, hyperbolic,circular, and zexo inclination ovbité
with almost no alterations in the computation procedure. There is no singu-
larity in the transition from the elliptic t0 the hyperbolic case 50 that the
cxpressione for the derivavives are valid even in the limit of the parabolié
case. The usual transcendental functions are replaced by similar power series

“aich terminste with a singie term in ‘he parabolic limit.

Derivatives for transforming covariance matrices to the usual classical
slements and the polar coordinates are also tabulated because taese coerdinata

'syatems are often usefu* in guldance analysis.

Let ¥ (%, y, 2z) be the positicn vector of the point mass in an inertial,

cartesian frame with respect to the dynamical center;
v {x, ¥, 2) the veloéity vector in the ceme frame.
The notation X eppearing in a matrix is taken to mean the combineq vector
x= (7, v)

I. Orbit Computation

Given the initiel values T = (xo, Yo z.o) and v (xo, Yo '/.o) at t = t ;-

the position r(t) and velocity v(t) is found from the outline bdelow. The
derivation of the orbit formulas may be found in Reference 2], The constents of
ths notior are;

20



ro - l ro [ s Vo ™ '\[o l
. 'Eo.'\'r'o
d - p—s
\JH
r’O 02
A = m
Co w A-1
1 2 - A
_‘ -
a ro

where u i3 the mass constant cf the central body.

Kepler's Equation e_onsisfs of the three 3imultaneous equations

M‘i -\J‘:(t-to)nrogl-i- dc+c°u -(1.1)
3 55 7

: © o Q

u .= =T T Ty Y tee (1-2)
3v 350 827: ! .
2 4 6

] I %“%ﬂ?""%g" veoe (103)

8 6. - .

vhich for givean t - to are to be solved by an iterative procese for €, u, and
¢+ In the present progream © is used as the inaependent variable instead of ¢
and M, u, and ¢ are evaluated explicitly.

el
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Nex: compute

B = & --‘2 (1.4)

r uro+da+cuc : '(1.5)

£ = 1- -Cr-; . (1,6)

g - 4% (1.7)

£ - “.EL‘;:E / (3.8)
. ° .

T B (1.9)

e T(t)= £T, + 8V, . (1.10)
|

V() £ .+&V, - (1.11)

II, Partial Derivative Matrix

'l‘he variational matrix <§--> may now be computed by direct differentiation
of the above formulas.

We begin by defining gl and n by

5 U 9
b L LR 2 (1.12)
a(-a L] a [ ]
4 6 8
a¢ ) 26 y+)
VW taE + 2 g e (1.13)
3 o,

22



awy_j

")

pifferentiation o (1.1)with the aidof (1.5) ylelds

(e}

by

2
% 'r A (dn-o—coﬁ)-G-i%
Lo

-1
ﬂlox

r o
ax ex
r—*t-'gg- ldq+c§-ur.‘.——°-_°
3,7 o ol d r—
J Vi

Differsnticsing (1.2 = 1.5) in order yields.

du B, 0
S " o ttl3
(o)
Ju S0 fg_
*. T °-'53t—°”zgu
d¢ 20 %o
= 8 -31]-—-5-
RS S
3¢ 36 %,
3—*—0- = 8-5;.(-0' 211“
2 . B Ly .l
% . o® 2% 1
§§; §§; m & 0%



— N

Q/
R

|

Y

¥

v ' N x
X L o on .r r 0 °

_\_E[;_as N
L

ro|r, axo rr a*o
ke
Trjox, T oxg

i R
_lle L& oor
r a:'co r o

X 8

T3



“peni ’ .
\4\)

W

Fluglly essembling it all an (1.9), (1.10)

of - ol

é-)?; ro+5-}-(— V°+f53(:)'

5T,

5,

T - -V- + O
Yo ¥ ax':o ot & Sxo

|

9

ncn——

X
o

' Deriveftives with respect to y, z are obtained by replacing x bﬁr Y,

and z respectively above,

Derivatives with respect to the gravitational constant, u, are found
as wefore by differentiation. The final results yleld derivatives in terms

o0
v

du’

" &

ac
*on

of pcrcentage change Eﬁ . We have:

1 N
o5 (M + cd) + =
P, M
cpa‘-i- ro
Bpm-&-ro

a5

(u.ro e k- an)



. Finally,
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=
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+
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¥
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As pointed cut at the beglnning; the previous formulas are valid for
any type of conic. However, one disadvantage of the method is that the

series expressions;, u, ¢, £, n converge rather slowly as the argument

becomes laerge. While one can always evaluate thege expressions by including
moxre and more temms, the amount of labor becames excessive after a short
while.

One way of ov.ercoming this i3 to move the initisal epoch along .as one
proceeds in the orbit so that the argu=cni, © -’,/;— (E - Eo) , in the series
is slways small. A second way is to classify orbits according to the value
of a and use the equivaleal closcd expressions when ,aj 1s smell. The latter
nethod wag adopted for our purposes since frequent changes of epock involve
considerable matrix manipulations when tracking is involved. This classifi-.
cation is in no way resirictive since there is no singularity at the tran-
sitional values of a.

There are six quantities wvhich are altered depending on the value of a.
These quantities and their equivalent closed expressione are given iu Table 1.

IIX, Auxiliary Derivatives
If the set of quentities X (z, Vo) is estimated from noisy data,

the transformation of the resultant covariance matrix, C (xo) , Yo a new set
of variables, w, is given by '

. .. '. 7\
¢ (v (a;) ¢ (%) (&;)
(priwe denotes transpose)

The sets which are frequently of interest are the polar cooxdinates

v, - (radvpg A)t . ¢ defiued below and the eet of classical elements

am(aeifaM) wooneed to find (Bvo | .-3-9-> aa.well as| &
. o ox_ ox 3

o7
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av
(_&_o may be found from differentiating the t formation equstions below,
I +) ) .
The subscript "o will be omitted for conver  :e since the rzlations ho‘td
for all t. .
’ \
1/2
r = (x2 + yz + zz) = geoc . .¢ distance
0 tan-l y/x ' = righ. .scension
8 = sin * z/r = deciination
1/2
Vv = (5(2, + 92 + iz) = velocity magnitude
3 = cos-l XX Liz I zz = inclination of the velocity from
' vertical
A w *l'.a.rfl e ‘w azimith of v froa norih
: rz - zr :
- oy o oz
"t r Sy r 0z r
o . .
oK <8 4 ya
2 _ £
ay x2.+ ;'&
9% _ -XZ
ox 2, .2 2 1/2
r’ {x° + y°)




Q)
o

Q|

¥

IH

1/2
ra (xz + yz)
2 2
X S
rz
X v X
v ¥ as' v 2z
A fxE o g
v, | T . ’
v. vz - i’z
h .
1 m;,r:" .
. Loy
vy, L r |
U P
rv, T !
1 (x v 3 }
- X
th L '\rz
1 Y T 1 }
< -y
rvh [ VZ
1 fo » & ]
rv. l_ z "
h v

< §3

.u‘x:'c+ij+zi'



r . . m
B (e - IR (ke e )
9 V. (x“ + ¥%) L . : ’
A i ix (rz - z0) + -5 (yz - 2y + yz =)
ay v e (XG + yZ\ L d ¥ J
h /
o4 E (xy - yE)
aZ 2 2
r vy
-a—‘;: - :"Z - é":
ox r v’
h
SA iX_- Xz
5& - 2
r v
n
24 _ _xr oA
3%y o2

The transformation to the clascical orbital elements requires the matrix,

ca_|

(:;—, . Since ihe elerients are more simply expressed in terms of the polar
Vo
coordinates, we find by from
(o}
v / \
da_| _Joa | évo\
onl Bvbj on/

v
o}

| ves glven above. In terms ot the polar coordinates the elements are;
o ) .

\

(again leaving off the subccripus "o" with the understanding that all the

qQuantities below refer to a common fixed time)



a8 =
‘e m
i1 =

[N

3 x‘ .
11/2

;1 - (22) sinzsj

cos™t (cos 8 gin A)

tan (@ = ) w 8in & tau A

@O ==

M =

\

u-~7

F‘ -
. tanf-.JR Lr.
W pe-r

P = A ainaB '

sin &

nu
tan u = e eos B

E-@asinE

re= ai{l=e¢cosBE)

Differentiating, we find

Q/
[+9)

!

2
(2 - a)2

a pajcr semi-axis

= R@CCCiiva .A\IA\IJ
= 1inclination
@ = ascending node

= argument of perigee

= mean anomaly

‘e # ©

pee(le ea)



oy

Qe
a3

315

AW

¢l

&Iy

~ cos 8 cos (& = )

'cos(a-f})_

tan {1

- sin ®

sinz i

Yo

2
er

ccsz {a -0)
cos A .

sin 1
Y p + e r
\lsl p % e
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ol

{ 1

. i Aag
Some odbvious restrictions for lm;r
o}

are noted ibove, i.2., (1, e, %) £ O,

/

This simply removes circular snd parsbolic orbite ns well as 22ro inclination

Qs 7

orbit planes. The derivatives remain valid for lyperbolic cases with no change.

" For the period, apogee, and perigee, we have

P = -/ ' S = periocd

r, = a(l~ e) . - : = apogee distance
rp' = a (1l +-e) o . . = perigee distance
e _ 3 R

oa 2 'a

or r or T

oa a ' ‘ 552 = &

ae = ae = a
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APPEWDIX 2 ¢ ATION OF . 'HEMERIS
The positions of th estial bodi . a obtained by a seri'es

expaasion in powvers of ti atricity .: ‘heis mean elcmentas,
Using classical a;stronomic. bolis;

a = najor se

e = eccentrici

i = inclination : i } ’

Q = longitude of {in the .rence plsne) .

® = argument of pes

M, = " mean anomaly at 1

o =  true anonaly
We find +the x componentc of position velocity

x - ')%) P+, G ’ {2.1)

1

X = K P o+ Q. B ’2.2)
with corresponding expressions for y %. The P and

Px = CO08 § COBW = 3] sinw cos {1

Py s 8inQ cos8w@ + ¢cos U sinw cos 1

Pz m BLG LY Lao s

G, fu - €33 5 ein® = 5in Q cOB W co08 i

Q.Y - - 8in R sinw ¢+ co8 n cos w ¢cos 1

Q = cos® sin i

-2
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and
X - r cos §

7o = r 8in £

X Mo gin f
X5 = -\jp

N, . B (e +cos f
hy 5 (excos )
r - —

T+ecosf
p . = a(l.é)

The expansion of the true anomaly, f, in terms of the mean anomaly is

given by:
£ -'M+e{2+ea(3+%5; 32)] sinM-e3P-3§+-%l.e2} 3@3 M
4 .
2 : 2 2 ,
+ (54»27(%}}31:1214-?%6-(%) s1n° M sin 2 M
- |
+ i%gl e’ sin’ M. . (2.3)
‘The mean anomaly at epoch is: :
My = Mgsp.o+ B (9D, = IDygsp) - (2.h)
Ml950 o is computed from values of L and w found in the American Ephemeris,

and M at any later time is

M(t) = M, +n (t - to) ) (2.5)

The mean e€lements of the orbits, referred to epoch of 1900, are expressible
jn the form : . 2 o
eflt')=s e (1900) + & t' + éa %—-2- (2.6)
%' =t - 1900.0
Table 2 gives a list of the coelficieats which are built into the program
for the various planéts. Should higher accuracy in the planetary positions be
required, one can insect osculating elements at a particular epoch.
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« Pl somas

APPENDIX 3 DERIVATIVES OF OBSERVATIONS

This appendix lists the partial derivatives of the observations with
respect to the position vector at the time of the observation. As pointed
oR

out earlier, the ccefficieats, SEE- , are required for the least squuiie
°

normal matrix. They are obtained by use of the chain rule for difierentiation,

('ani (aa { -
x| ° X ) \ox

° o,
OX : aRi
The matrix - > vas given in Appendix 1. b for the various types of
‘ of
\

obsexrvebles will be tebulated in thé following.
Notation:
r - (x,y, z) - vector position of spacecraft with respect to the
primary atiracting center at time, t.

r - (xs, Ygs zs) - vector position of the radar site with respect

to the center of the earth,

D - (px, Py pz) - position of the spacecraft relative 1o the radar

stat’' +n '
:p = YT in earth phase
= r-e-r  insolar {iunar) phase
= T4+p-e-T in planet phases

c - (ax, Oy cz) - velocity of the spacecrafi relative to the radar

atation
e - position oi earth with respect to sun (moon)
P - ©position of planet with respect 4o sun

4, = rodius of curvature of the refercnce clltpaoid ¢ = d (¢)

38



>

S = sidereal time of
A - station longitud
¢ - station geodeti
h = station altitudc
8, " equatorial radiu
f . flattening of ea
we - angular rotation

The radar station position ve:

-8, 1 -[(z £ - £9)

r
A (dr + h) cos ¢ co
y, ® (dr + h) cos @ sis

i, = [(l -‘f)a d.r_ + h]

The velocity components are not

doppler.

I

Derivatives of the Observab.

The radar observables are 4

.1 P
5 = sin 1 2
p
o)
(0 = tan 1 b4
Px
H = 8§ -0
- [o]
fo
p'r,
where p =

station
tude
‘¢ the ref 1 ellipsoid
:he eax
l_
298.
. of %. .h )
18 found {i
-]
)
RS s
s W
e 6
=« 0
red 1 onie of the data types 1s
th Res: o r{t)
«~ by
loc ‘clination

39

locel right ascension
local hour nugie

elevaticn nugle

azimuth from north
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By straightforward differentistion

» . x|
°x’, Iolzu

2 21/2
u = (o, +p,)

L L fxP
3 jplw .
db . u
Sz . 2
' o]
B _ Py
B?c'. X
e, &
'5& ua

S P s, . ..’.‘_..2._
Vo LFsl el
) 1 ys- ' QZ ‘°r' -
o ¥ s R
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B _ Ll ls f_z_,..p_r-}

oz v -‘rB! DIZ ]

DA 1 (z_ o=y 0,)
I~ " Y 8 2

ax ’ralvz °

JA 1

S; = lr lvz (xs pz 2 px)

. 8

aé l .. ~ - A )

2z - lr ‘vz Vg Fx T8 Ty

8],

. k p
AL X P Af —X
ax = lpi (ax' ipl px) ’ a’,‘ - o
wh'ere' ap - TET ’

. k
oLf . K. (g4 o o) onf =%
oy o] ¥ [P ¥ ox P
W k(.2 pr _ XP,
S e e Y % "%

p o)
® . x g . X
ox p’ oy 'g' ’

3p
oz

Pz

)

The above expressions are valid for observaiions with respect to a lunar station

provided ra and v, . ore computed for the location of the station on the moon.
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Bpacesraft Angiey

The 2lock angle,

A, 1is defined by

n,' ng

< o n

2 ™
s Xr L . BXr
ls x rl e lp x r|
H H

8 18 the direction to a given star from the vehicle.

Ths cone angle,

- CO8 B

=

B, 1s given by

r' (p-r)
v |p - r|

For the derivatives, we have:

ol

owar

'4e the position vector of the space craft with respect to the sun in
this case. ' .

ﬁl‘ ﬁl;lz- (s"b') - r'p) (r°s)] (i: x's),

(p x 8'1.")'[(8'10 lz]x + (') (')

p.S

vl

- (x78) |r|p, - (='p) |r]e



Wk

s s
IRE> Lo e, 2
D = yr| ~A{x's) i 'r|Tip - (r'y
L EE
. ) o -
o - cos B ! x ex Py X = Dy
—_— 0. . = ———— =
O | & i 2
()X ,\/‘-“_T‘ ‘ {EI' rI (I‘ - I [p - r| a'
Vi-cos B | | b2
dh A 9B 03 e .
=~ , = , == , == are ovtaincd by rep.ciing X by vy, 2
oy ' 97 oy 7 9z

in the corresponding expressions above,
(Note that Tor the differentiasl correction, the vectors n,; n,; b need not

be compuicd).

Qcecultaticos

An occultetion of a planet is given by the Lwo angles

Y
tan ¢ = 3-{39
P P

8in & a —=

winere rb is the position of the spacecraft with respect $0 the plenet being
observed, The ier. atives are the seme as the ones given previocusly for
,, 0 bul .. %7 replaced bv -T,

Plernetary diameters
The planetary diameter C is

~ T ' C;e
Fin :é’ = N ,o \'
PO bl
i i — ) o

of } ) planet
ana
< e %
ox ) 2 2 -
lrI‘ [rbl - | 1/e
J

*vih corresponding expressions for y, z. Here Ty is the physical ra.ius of

the plan:t,
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Derivatives of Obrcervables with respect to !

Stat’on Coordinates con tarth:

(%%) = ;.(8x } ) {g }1 (ax }

L\ B
vhere A denotes the vector (A, ¢, n) 1in
(5%,
The components of lEi_/ are
N
s s _
2k ’s 2N 8

ox
553 = - (dr +h) sin @ cos S

- (dr +h) sin @ sin S

o
it

5 - |00 ¢+ cos g
S5 = cos @ cos S

cos ¢ sin S

I
i
i

3% 3,
™ = T %N
Aks L .EYS
3F e of
S .
oh ‘e Ah

i

ipbove matrices.

st

W=
s, P
)8 e OA
B&s e Bxs
5 e of
e %%
oh ¢ oh



J

3R [ar 3R .
For the observational types R = &, ©, K, Of, ¢ '\5-{ = 0O; \53; - (-&- ;
8/ LN
I
The latter were given previously. For the 1y , BIa N, T , Laven
below: - Vi
S SR A |
ox ;r lv Py Tl
8 i 8 |
J
JE >? r : 4 P A e YA Ao n o
%}1— and  <— are obtained by replaci:; X by y anu 2 reopectively in
O
5 5

the above.

%7&. - Zl 2y 2 lpy(fr)s[pz spr)
‘s (xs + ys Jv
{xs py * Vg Py ( Xs T ).1
- X - Z p_* e P
Irsi s Pz 5 . lrsl by J
aA "1 [ (r - 2 )
- p P e
FY; (xs_z . yGZ)v X 8 ¢
-(x o, =Y. o, Y. 2
s Vy s "X| i . 5 s
7] (Yg 0, = 2, 7y * = pr.)
A Py < .
B g e
8!
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Ckpge . .

N X

ctermination of Physical

In the deternaination
deciding wnhich observation
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we may sec oW differing measuremente will yield

differing relations between estimates 07 the physical constants.

For the case of the noon, we have &t least four differing ways of
estimating the mass of the moon. These are: (1) lurar equation, (2) parallacti.
lnequality, (3) nutat.onal effects upon the earth by the moon, and (4) neriod
of the moon. The partial derivatives will difYer according to which measure=-
ments ve are meking. Of the four estim&tioné, we will adopt here the period-

maegs relationshiy.
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The uncertainty in the moon's mass is coup’ <ther with the u. = riainty
in the mass of the earth and the mean dist ,;etween the easth &nua moon.

The general philosophy here is that no estit.v.on be made of physical constarts

07 anotner phase s0 that by this conventiocun &“e is set tc zero.
Mags of the Sun
Les Mg be the mass of the sun
Ho be the nuss of *he earth
Xy te the lInitial position vector of the spacecraft in the sun frame

X0 be the initial position vector of the spacecraft at burnout
€ Dbe the position vector of the earth in the sun frane
A be the non-dynamical variebles

au be the astrcenomical uait

From the definition of p, we have
P = r-e-rB

fA%)

Lr - de - Ar
8

Tel:ing noce of the fact that
r = (xo, “s) in the sun frame only

o) %o V5o’ Hg? “e)

e = e (u)

x
]

Te = T4 (a, “e)

R = R (p)
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The subscript o refers to the pos.

time of phase ohift.

- (e)t

Bua Mg

The subscript "t" refers to the positio
time of observation, t.

3R \ OR | 1

We see that uncertainties in the au affe

./

1. = (‘%;-) (e) 1is an initial
> ° o
s.n ~wses, This effect 1s sim
e

2. : is the direct deviatio

2 mass of the sun.

5. (e '8 the error incurred w
‘ar nsformed into ccordine
In sjun frame, errcrs in -
ear ‘e neglected, (i.e.,
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Mass and Equatorial radius of the Earth

In solving for tic mass of the earth, we vequire tnat

Te il
My 2 g

For any cbservation R,

OR . (_6_3 /ax .>+ ‘E,R axs aﬁLe
ot 158 &)

\

For our purpuvses, it is sufficiently accurate to assume

.\‘
L / :
o <Bxs\ C xS
) Je | =
: )" \% /

‘hence on combining,

R .. () ), (&)
YelSu | = Me \3x /\3n, > \2

Mass of the Moon .
. R . (3
“m[sﬁ;]' a 3p (5‘&;‘

This case-is analogous t0 the case of the solar mass except that M is
] repiaced by the sum of the earth-moon mass. Hence, if e is the nosition o
N the earth relative to the moon, then

)
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Strictly speaking, the uncertainty in the h meos as well as mags of th. .~
significantly perturos the mean distance moon. These effects are 1gnlicia,
80 that we have only accounteda for the 5 <y ir the earth-moon distance
due to uncer‘ainties in the moon's mas.  .y. - iz all we can do because

of the rule that only uncertainties in - prin wss center will be con-
sidered in any one phase. :

Velocity of Light R

<, enter in the doppler formula

= =k
Ja\y ap
hence,
o aco

end also in the slant renge through time del T e

!

2= e

9L - .x' ipl
% oc, = k ‘p,
If kx and k' are sst to -1, the Cbservablce are change:. N

T w0 0 and lpl.
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APPENDIX ! THE IMPACT VECTOR AND ITS SENSITIVITY COEFFIVIENTS

Computation of the Impact Vector (b)

(The exact definition of b is given in (4.4) below)

Let r = (x, ¥y, 2) and v = (X, ¥y, z) be the position end veiocity respectively
of the spacecraft with respect to the target plenet at the point wﬂere © is to
be computed. This point should be sufficiently removed from the garget planet
sach that v 15 o geod epproximation to Vo ! the velocity at infinity of the
spacecraft with respect to the plsnzt or the incoming hyrerbola. In the pro-
gram, b 1s computed at the initial time point in the taxget centered phase.
|r| at this instunt is equal 10 or greater than the radius 61‘ the sphere of
ac‘qion of the target. .

The .mpact parameter, B, in the reference cartesian system is approximately#®

r1v ‘ L)
B = 1 - "'E“"‘ v (l"l)
' (A prime denotes trenspose and r'v 1is the inner product of r and v; r'r = \r\z.\)'

»

It is frequently convenient to express B in terms of impact parameter (B)
plane coordinates. The specificetion of such a systvem requires a sezond refer-
ence plane which intersects <the B plane. One poesible chcice is to choose the
ecliptic as the second reference plane. This choice is used here and the

1

B plane system is illustrated in Figure 2,
¥The exact definivion of the B vector is givon by

XV = XV
J = B ®

vhere J is the angular momeantum. ' Hence cross rmultiplying by Vo and
expanding, one cbt - ns

e
&2 - ' -
Vo B Vo X (r x v) (vm v) r (vo'o )V
v'v v'r
B' —-@-——-—— I » @© - v
2 e
Vool Mool

If the particle is ot a sufficient distance such that v = Voo ? then one obtains

Va rrramt anlanr Bavw D dan ,h 1Y th\,yp’
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" (VERNAL

Z (ECLIPTIC NORTH POLE)

EQUINOX)

~ NOTE:
, THE xy PLANE COINCIDES |
: . WITH THE ECLIPTIC.

FICURE 2. Illustration of the B-Fiane Coordinate Syet m
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‘ The transformation 1o the B plane sysiem iz given by three successive

rotations ‘
A .
b -kbz -=YBaB ' (k.2)
§°3'
where ' ' o
g COS\(CSO\/l 0 0 .
raa-plo) -sco)(\o C s (k3)
so0oc/\oo1/\o s ¢/ '
62 | G.L €

&,

in vhich C = ¢08; S = sin; and the . ‘guments are given beneath the
rotation matrices; they are defined by

€ = obliquity of ecliptic ~ 23.5° "

§-
91 s tannl <%) . /

-l [=-2
92 a 8in (-7)

a is Just a rotation from the original). reference plaae (earth's equeatorial)

recall that v = vw

to the ecliptic. p and y are rotations throug.. the two polaxr angles of
- as 3hown in the figure. In the new system ‘ol is along «v and 17 zeyo
_or very small; 'b:a is alcag the intersection of the B plang and the acliptic,

and b, completes A right handed cartesian system.

3
We shall define a mew vector b witi ylement 3
r A .
T } m = (4.4)
1

‘which is called the i.jacy vegtor. t, is the time of flight from the initial
. epoch to the target poin. (or some appropriate point of interest.)

5k
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Peixtin Terivavives ol b
To find $he derivatives ol © with respech t2 initial conditions, X, we
egain maxe use of the cnoin ruls=,

EANEN |
.5.}_:. / : ~:- 2 } (h’OS)
e}

where X is a2 combined vector, x = (r, v). Comsicer first the derivstives

for b, and b3. They are ovtained by differentiation of {4.2) in which we

2
congider the .rotation mstricee as conauant Yence
~ N / .
~ .
/ob ~ ox \ (L
4 .
|| = Y8 ox )ch (b.6)
vy ©
4
‘ 5 83\; 4
I compouneuts, P ois:

Ix below refers specificall y to the coordinate x and is not to be confused’

with the 9onvenient abbreviction for the combined vector (r, v) used above.]

) .2
;2‘. = 1.2
X lV;
BBx . .
= I
¥ TP
an X 2
=TT
v|
. an " v ( 2 iz _ 11 - %X
N 1
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oy \Jvi v
A’B}‘ [ v\ X 2
5 = { —— | 2% 2 « ~F ==
% Vvl v

Expressions for the derivatives of By. BZ ar: obtained by an exchange of

letters in’the sbove. From (4.6), the derivatives for o, and b3 follows.

In (4.5) the matrix,<§§-) is Just the variational matrix eveluated at the

0
computation time. This was given in Appendix 1.

If u is a mass constant for & vhese preceding the target phase, the p

derivatives of bz and b, are cbtained Irom .
.)

(8] - vsa(Z (&) (k.7)

\au ox
The only difference betweecn (4.7) and (4.6) 18 the last factor. If ke 18 the

mass constant of the target phase, then kgﬁ—) = O,
by

For the partials of t, we consider two separate cases, The first is
one in which we find the changes in the flight time prior to the target phese
due to incremental changes in orbit parameters preceding the target phase.
The second case deals with changes of flight time in the tarzet phase due
to veriations st the initial point of the target phase. The latter is also
useful for finding the derivatives of flight time in +the geocentric phase
when the velocity vector at infinity is vexied in the course of a search
. routine. (See Appendix 5).



IMPACT PARAMETEIR P! ANE
: WITH RESPECT TO TARGET

i

Filgure 3. Geometry of the Transfer Orbit

Referring to Figure 3 , we define

Hy, By - mass constants of the two bodies involved

) « the initial position and velocity of the spacecraft ia
the transfer orbit. (% = to)

X0 © (rb’vo

X = ‘v, v} spacecraft with respect to target planet at initial epoch

of target phase (t = tl)

spacecraft with respect to target at the crossing ol the
B plene (t = tz)

xp = (T5,vp)

Cuse 1 .

In the transfer orbit, let tp = tl." to. The partials of tf are

- v S |
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Tais 1s simply the variation of %he position vector i1 the dirsction of the
approach asymptote to the target divided oy the hyper..l .¢c excess velcecity.
(Again r 18 large enough 60 that v is & zoccd approximstisn to the dilrection
of the asymptote.) The regative sign occurs becaute a positive veriation

(in the seame direction at v} implies that it requires lesec time to reach a

reference distance along the oxrbit, Also we have
[ o
(at“ " {3#,)
Sp | —— . (4.9)
- (v . '
Case 2
In the target phase we let tg = tz - t., then for an independent change &r
. oo .
ot :
(5;5) - s o (4.10)
jvl

(4.11)

- ov !
-v’@ixm% .V-Gr)@i)

/ _Bi&) _ W\ oV, \or,

& ol K

The last equality is the result of a mstrix inversion theorem given in
Reference [ 4] . One way to arrive at (4.11) is by considering the symmetrical
escape trajectory with initial point (i‘z , :fz) and final point (¥, ¥). The
time, $_, to go ‘rom (;z, 32) to (¥, ¥) is the same as the time to go from
(x, v)’ to (rz, vz)‘.
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(r,, v“)\
\ |

HARAC™ \

PARAVETENR ,/‘\
PLANE 722\,_,,/‘\
/\’f T3

COUNCRY OF TARGET'S
SPHERE CF ACTION

Figure ¥. Geometry of Orbit in Target Phese

A varlation Ov' in the .a.ppmaéh tfa.jcctory produ ec a change 8v2 at
time ta elong the acminal. An increment 5‘7;2 cai se6 & changs in time of

~,’ " ro B't‘\ -’
v &t = o7 whezxe
fight of, gtven by &, (o 2}5 2

) ar '[OT \
3t -V (’é’*‘f) -V (Sv'." at
) - e e - (o) e

Henco using the chain rule in (4.12) yields (4.11).

There axs two p &er;vaﬁivéa for 1;8. We heve

2.\ R (%?") (:_‘_'g) .
Vo My ' S ’ .
&) == 3
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and

(2&.11;)"“

There are no changes in t, as a result of positional (isplacemen.s from

ko 8% tl because any dis;lacement uere  produces s cnange Stl which

in effect brings the spacecraft position at tl to it3 nominal starting
point for the veginning of the target phuse.

Withir any given phase, for a change of the epoch from t to enother
epech te’ the ¢ £ derivatives with respect 10 new initial condi‘oions » Yor

"can be eagily obtained by use of the chairn rules. For example in Figurﬁ k

if tr = tlt- te

3y° viv viv

The‘p derivatives are not related ss simply and have to ve evaluated at
each epoch,

The Critical Plane and the Principal Divections for Midcourse Maneuvers

At a point (%, r, v) along & rendezvous trajectory, an impulse

ov = (5%, 8y, 8z) will cause a change in the b vector at the target
. given by

& - (gj‘;) &v o (4.15)

For definition of B, see (4.2).

€0
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may be written

P
‘"21%’1

o/
o)

AR
[ 5 /
; I

E:”:z ab? !

L

Qv ov

|
\

NG

\4 [e%
N
N

ab
Again, (5;2/ should be zero or very small and may be neglected. The
\

¢critical plane has the vector noxmsl given by

the component 8vn =

in (k.lS) is given by

ob
oV

(ab]

Bvl

waere )1> Xz' then the
principal directions.

maximum sensitivity; e

S5v'n
RS

35\ ]1/2

) =M 1is diagonalizwd by an orthognnal transformation to the foxm

/
f
|

A= U'MI =i A

Ly

columns of the ratrix U are the eigenvectors or the

The firsv eigenvector, @l ie in the direction of

, 18 in the direction of minimun sensitivity, woth

~

of which are ia the critical plane, e3 is along o and is the direction of

zero sensitivity for the miss components (ba, bB).

61

4,16

will cause no change in b. The magriitude of 6§

(4.17)




One of the program ovtions is £0 compute these senslitivity coefficlents

and the prircipal direstions at specified points along the ¢x2it, To do

this at & sequeance ¢f time points %, L ve need to find ( ?t +» This 18
\T 1
écne by Jinding

- /—5—‘? . = Ob \‘/-?——. .
\ 9%/ \““o/\“'i/
. -1
Jax, axi\ /BA
‘«-q is most easily obtained Ifrom | ——
= &) =)
vwhere /axo\x
(axo ;’ 3y
SEZ/ éxo )
e
\Uvi/

€2



E2PFNDIX 5 S \dCH ROUTINE
AL S

The search routine is uccd to ac. leve a set of required final corilitions
by means of aa iterative differential correction procedure. The secoch may
be carrled cut by varying either the initial condition vector, X,s OT the
veleocity at infininy, V! OB the geocentric escape hyperbola. The former
method may be used with any initial orbit phase, the latter is restricted tc

b I PRy

Py s O N
U, J&4 sy LU Sy LT TOA Vi e

Corsider first the search on X, To start the cearch, it is necessary
e dnput the recuired final wvector, b, and a set of jnitial corditions which
yield terminal conditicns, b, reasona;ly close to br' The program then finds
the linear correction

» -1 \-1
- [ 3o \ f ob .
o = \.&_ lbr - (x )| = zsr) Bt (5.1)
°/ °
xOI =X+ &xo is us2d &s the next triel velue, This process 18 repeated

until |b (xo)'- br! is less thin some presssigned quantity. In Appendix &4,

» wes defined as a 3 vector. xo'is & & vector. Hence, X, is not determined
uiiiguely by a specification cf bé alone. Also, the csearch may be done with
or without fixing the time of flight. In the latter case, only two inde-
pendent components of X, need be varied. An optien is provided whereby the
components of X (2 or 3) may be designated for the search. If the componenvs
are not specified, then the program varicc all six initiel conditions and -
finds the correction which has the smallest total magnitude. This is done in
-the following way. Let Q be the (3 x 6) matrix Q = (%;—) ; U en orthogenal

()
trensy sa . {on wihich defines new variables



Yy = U'x (5.2)

o
such that
A= UQQU (5.3
i{s a diagonal matrix. From equation (5.1)
6
z , 2

2t ¢ - [ ' - [} = ‘.
6b'%b = axo Q'Q 6xo By 'Aby 1ol ki 2y

where ki, Eyi sre the components of A and 8y. If we set the three componenis

of Yy with the smallest eigenvalues equil 40 zero end solve for the three

remainlng components y3 from

oy, = (@)t ® (54*)

the resultant magnitude of the change 6y3'6y3 will have the smallest ,
possible value. 5x0 can then be obtained from (5.2). The process is equaliy

valid if only two components are varied (free time of flight).

The eigenvalues in (5.3) depend ci. the scaling of tue independent
variables. In the program (5.2) is ac ually given by

y o= SU'x (5.5)

vhere S 1s a diagonal matrix of scaling factors. In the program ve also allow
for a search in terms of the initial spherical ccordinates defined in Appendix 1.
Th~ matrix S is especially important in this case since it allows Jor relative
welights between engles and distances 1o be adjusted. In the cartesian system
using megameters and kilometers/second as the units, the identity ma*vrix seems

to be a good S matrix.
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While the eealch on X, is usuelly sevisfactery in temms of achleving

S

The

{nal cenditions, the resuliant x, 't may not always corraespcad to

)

realistic leunch condivicns &y the earth. TFor this reason & sesrch on tne

1Tinisy on the giocentiric escape hyperodla may e subsoit ted.

]

velocisty at in

.‘w-

ince this v ‘-“oc“) vector does nou deltermine Lhe gecseniric Foniq anique

fiight pnase. Iz Veo is Lie veaosi

£inds th> corrsction vector Ayoo .

oV R o - (v )
oo \\.)Vm/ Skr o’

and iterates for the correct value. AL o compleling the search, the routlne
ther. celculates the injection conditicus near the earih with cevrtiain spec*fied
constraiats. Since va) is & 3 vector; +the solution for éwoo in terms of br
is unique if Iiight time is fixed. therwise, there are 3 choices

for the combinations of the two components of Yo to be varied. The particalar
combination may be preselected or they can 211l be varied by the machine on the

vesis of a minimel magnitude oriterion described earlierx.

1 4

A fundamental blocx diagram of ithe seaych roitine is shown in Figure
A somcwheat more eleborate search routine whicn does not require an initial
estimate;, but only lsunch and flight time, is being contempiated. 71t has been
pustpcned until othexr more urgent aspects of the program are compleced singe
other existing analytic lunar and interplanetary programa are avallable to
supply the initisal condition estimates reeded by TAPP.

Paxrtial Derivatives for Search Routine

In the actual search on initial conditions, the independent variebles
nmay be the cartesian (xo) or spherical (so) coordinates at injection. If

.
cartesian, the watrix [%E—) is given in Appendix U. If spherical, the matrix
’_E_)_b__ ‘s \ o] .
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e ) e (5.6
'é}f;l \Oxo/ {\.OS /[ ’ ‘, (5 )

fax, . ‘ r
where \ S 18 & € x 6 matrix given in Rele.cnce |5 .
v

If the cceveh 48 on Vo ! “he derivatives Tor the two miss components

are given by

—I"—"N
2

[AV IS ]

Se——

(5.7)

whers v, 1s the velocity relative to the earth at the pseudo infinity point.
e

Thig 38 the point at which the spacecraft lecaves the earth's sphere of actien

for planetary trips. It is the initial point on the mcon phase coaic for

lunar missiong,

The time of flight cerivatives arz alseo given in Appendig L with one
exception. We need o find ths time of fiight change in the egyth phase due

to an independent varlaivion of &v,. We first find the change &w
e

at injection needea to produce the aincrement Svl; then thza variazg?ﬁ Erl of the

position vector at the psevdo infinity point due to 5vb and divide %K vl to

find the change in flignt time. ’ \
. .
S ' B
St, Oty - vy /Brl\ /6{3 . A (5.8)
170N T Vi o\ E‘\;; A A

A\
N\

Equation (5.8) is the same s Equation 4.11af Appeadix & except for a change
of notation. ’



EN 4

If the motiun relative to the target is 2)liptic instcad of hypecr-
bolic, the conponcats (m,, mz) of the b vector are repleced by the target
centered rlight ascension and declination. The partial derivatives which

replace the ones for ny and m, are

: ( ) : < ) <> ) ’
o »5' £ & y ) (
or

1

: ‘ A

where r, 16 *.» nominal position vector &t the final impact point, (B‘;’c‘ }
by Lo

)

0Q

is the (3 x 6) variational metrix evaluated at that point and

T~
i
S

O

10;

o/

- (o)
‘ or ad b
f ® ox 53711

Expressions for thesc are given in Appendix 1, page 27 .

' N\

Derivation of Injection Conditions from the vy Vector \

after an scceptable Voo' vector has been found in the scaxk{x routine,
it 1s nccessary to derive the injection conditions(posit.i.cn and v‘glocity
at end of final burnout) which correspond to Vo (Actually, the Initial
Voo vector 1s specified by a magnitude and two angles. The search \

routine however varies the certesian components.) The whole object of

the computation is to find injection conditions which yield the correct

Vo vector while at the same time have a prescribed launch azimuth, and.
launch latitude, This is accomplished by adjustuent of the coast time' ‘
in a circular parking orbit and the iaunch time. The computation pro- \
cedure is essentially due to V. C. Clarke. {Refarence 6 ; . The inputs

ar2:
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c3 n  twic: the vis-viva ercrg:
as = Yright ascension of asym,.cote
55 = declination of the asymptote

C_, &, and B, specify the initial voo vector. The remaining constents

=S S
waich specify +the c¢unstraints are:
| A = launch azimuth
¢L = launch latitude
> ‘ = launch longitude
S S -’ injection path angle of velocity from local horizontal

R = geocentric distance at injection

t = +time from launch to Jirst burnout

o2

foa - +true anomaly between launch and first burnout
tz3 = time of sécond bﬁrn

f23 » angle swept out during secord burn

RI' = Pseudo infinity distance = 380 Mm

n = mean angular motion of satellite in circular (100 naut. mile)
parking orbii 4

w = rotational rate of the earth

n = gravitational constant of the earth. e

Figure * 1illustrates the geometry <. the parkingland final orbit.
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FIGURE 5. Geowetry of the Parking and Escape Orbit
B ’ ’/

69



e R

Equations te find final burncat conditions at the eartnh from (’.‘3, 52 8

follow:
The cartesian components of the asymptote direction S are

Sx o cos 68 cos as
8, = o8 hg sln O (5.5)
. Sz - win 88
The unit normsl to the orbit plane is W vhere
Wz - cos Q'L sin AI. = cos 1
. . " w, S .
Y m Q@ - are sin ; 2 - ° (04 o
B | t*“Jl--w2 \ll..s? (QO,S(E'Q)S+'9O)
V z
4 2 ' ) .
| Wy = - cos & \J1 - W . : (5.10.
W, = ein? \|1 - W
z
Define the vector B by -
T « BxW o | (5.11
Coupute '
| 24 1/e
. e .
v » C3 o | (5.12
e . 2 2 .. '
P " V R cos D (5.13
He :
pC | ' |
T Ts- ‘ ' (5.1%
(.

T0



Foxr hypexbolic casea‘, the 1oe anomaly of the ssymptote 1is fa where

] 1/2

1 o -2
cosfa =~ ainfa - [l-coa t“.

For elliptic cases: (5.15) ig repleced by

1/2
con ¥ wm === gin{ o [l-c% 1'!
a . LY

iext compute the vectors

P = cos £ S+sinf B
8- P

a.u- ginf S-cosf B
. e a

The true anomaly at injection is £ where

S L ¥ ’ R
eR , ' m einr”

.
co8 £ 2=, gin f =

Finally, the position and velocity at injecticn are:
R« FRcosf P+RsinfQ
N L P = 2
= \]-; ‘eian_+\J—;(e+lcos.f)Q
The right ascension of the launch site is given by oy vhere .

W sin sin +w cos
cosa.b'. X. 2 AL ﬁ"
‘ - )

w
.z.

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)



B s T

' L
ein - _—,
a"’ wzz - 1 . .

W, in ¢L 8in A, - W _cos A

and the unit vector to the launch site 1s ﬁL with components

X, = ©o8 Q& cos ¢L T

y, = sino cos ¢L

oz, o= sin ¢L

£.22)

(5.23)

The true anomaly of the launch site in the orbit plane f; 1is obtained from

ol

1 By

|

fL-‘tan

o]

*

.

Define Af by
N = 2n-f +1 .
The coast time is given by

1

-

The time from launch to injection ia th where

t.b = t°2+t23+tc .

T2

.- (5.24)

(5.25)

~ (5.26)
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P

The longitude at injection is

- w O - .9
A, o= Q.0 wt-,b+)\L, | (5.2

£
N

wvhere ¢, 1is the right ascension of injecticn which can te cbtasined from

1
(5.17). The time of injection measured from the ridnight of the launch date is

@ -\ -0 . i

1 i 20
4 . (5.28)

Sy

ii

vhere © o is the sidereal time of Greenwich at zero hours on the launch day.

The launch time ia then simply
=Y

The finsl output is tL &nd tc.

C
As a word of caution, we aote thet the sclution Lo @ to exist, ,.‘
wZ ' SZ
' kas to be less than one. One may easily show that
\1-w \JE - g2
2 Z

1l - SS - Wz >0 ci that cos2 8S > cos2 i1 where 1 is the inclination

of the conic plane. This btecomes imaginary 1if 58 > 1. The upper limit exiscs
since specifying the launch azimuth and launch site completely determines the
crbit plane inclination from

cos i = cos EL sin AL .

Any bs < i can be achieved, while 68 > 1 1s forbidden. If the final
85 1s greater than i; the program will halt and print "gearch routine fails."

:

C
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égggﬁg;é_g CHANGING PHASE AND EPOCH
In this section, ve will consider the calculatior: needed in changing
from one conic phase to another. In thc least squares computations, the
uwatural parameters to be estimated are the cartesian coordianstes of/the
spacecraft at the beginning of each phase ‘nwecause the redar dérivgﬁiv~q
Zor the data within the phase ere computed with respect to these coordinates,
This is not a restriction, of course, since the final normal matrix can be
transformed from one time point to snother by means of the variaticnal matrix

between the two points.

An essentially identical problem 3s that of shiftiag the epoch (which
may Or may not,involve s phase change at the same time). I%¢ is known that
the variational matrix which occurs as a factor in the radar derivatives '
becomes increasingly difficult to invert as the separation between the data
and the initial epoch becomes larger and larger. This matrix has determinant
unity and some elements which grow approximately linearly with tiue '[see Refer-
ence 7]. One of the ways to avoid the numerical problems encountered is to
advance the epoch so that the times of observations relsiive to the initial .
epnih are less than some preassigned number. Advancing the epoch involves
essentially the same procedure'as changing pbase and the latter will be
dealt with first leaving any differencez to the end.

The simulation of an actual midcourse maneuver 1s similar to shifting
the epoch except for the computetion and addition cf the maneuver errore.

Orbit Computaiions in Changing Phase

In approximating the orbit byla sequence of conics, it is implied
that there are boundaries-at which the center of force should be changed
from one body to another. Ihese boundaries are rather nebulous at best.

In the present case, we will define them by the use of the sphere of action
enncept. '

Th o o



The sphere of acilon about an attract,tng centexr of mass, Hys in the
presence of a larger mass, Wy, was delined by Yegorov [Reference 8].
Referring to Figure 6 , let the two masses be esparated by e unit ¢istance
and let p be the radius of the spherzs of action about M5 “hen p 1is o:btained

~N
/ \ -
. \ N '
/ L p \ur, (1 - .mw,._,,_____...i,.@! _ ‘
e e 2 ‘ Wy < By
2 . .
/ .
/= Spreve of acidon , .
ot by s

, FIGURE6. &vuere of Action

irom the equation

=

o . (1-p)° ) _ M—m(5,1)
o R B
(1-p)" . 2 ;E !

If the particle distance "bo My le less than p, 1t is in the action sphere
of My and its orbit wiil be represented by a "1" conic. Co versely, if it
is .furthexr away than p, 1to orbit will be approximated dy a \2" conic.

m .
Note that in the left side of (6.1), -%3 is the magnitude of \Qe “eentral"
. p . )

- B
force due to By on a particle at "A" and ---2-)-2— -y
| ' (1-p .

‘18 thé\pe rturbing

\

A\



force at A due t¢ 2 if By is the primery ...tsr. The right side of

Bquation (6.1} ha' . similar interpretation. Selring for p from (6.1)
with the assumptiva that p¢¢l, we find

uy ‘“/D
. P ‘\/?“ZJ (6.2)

As stated earlier, the boundary at which to change frcm one center to

another 1s not espccially critical., "'The orbits themselves are somewhat
sensitive 1o the exact values ¢ p but the derivatives are in general

‘much less so. In cny event, (6.2) servcs as a definitive criterion for

the sake of consistcncy. The tadle below lists the values of p being used
with the various masses.

A

Hy o Ko ( “’l/ o y- P
moon | earth 81.335 © ,150
earth sun 332951.3 .00538
Venus © swn’ 408645 .00496
Mars sun 3088000 .00221.

Having defined the shift boundaiies, we nuxt give a rather brief
descxiption of the process for finding the shift times., It is a,ssuinéd. that
the elemenis of the conicés under conaideration are known. There /are: essen«
tially two types of orxbits to consider. 7

First if the vehicle 1is departing from the simaller mass into the realnm

., of the larger mass on an escape hyperbola, the eccentric anomaly EI’ at

the distance p from Hy is -

i | L, p 1
bl = cosh ~ (1l - &) e

AN

6 N\




<o

ars the usual seni-axls ang ecceatricity. The time of crossing

4ne sphere can ny: be found with the aid of Kepler's Equetion

93/2 r .
S = - —— IF = E - Sinh E" - ,r E h .
‘b to ) { "‘l ° \ 1 a 0) *
H L |
t and & are assumed AnoOWnL.

o o]
In the seconi case, the tarticle is on & conic about the larger mass

wnich is 8 transfer erc between ©wo smaller masszs. We geek the time at which

s
the spacecraft plerces the target cphere. <o be specific ~onsider a heliocs
centric transfer conic from eart:h to Mars. As a 1irst approximation the

eccentric anomaly &t the Mars end is given by

wrere e is the semi-malor axis of the Mars orbit (due to considerations
peing taken for Quadrants and the mwmber of crossings of the Mars orvit by
The spacecreft orbit). The time iepse from the sarth end cf the heliocentric
erc is again found by mesns of Kepler's Equation. (If & is larger than
apheiion of the venlcle, then El is set to 18°, 4 similar test is ipade

17 the terget ©ody is an irner planet.) This is not the time to begin the
planet phase, however. To find the actual shiit time, 3 sequence of E
valves about Fl ere tried and the distance to Mar: calculated at each point.
An interpolation (5th order) is tuen used t0 fina . > irstant at which Zhe
spacecrart pierces the target's sphere. If the ori.t zisses by such a
large arount that it does not hit the sphere. the interpciation stops at
tre ?oint of closest approach tc Mers. From here, the search routine may be

used to home in if one chooses.

Having founl the shift times, it is & straight forward matter to compute
tb~ orbit and variational matrices from the given initial condi+ions.
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Least Squares Comoutations

The least squares computations in each phase consist essentially of

three parvs. hese are

a) Processing of the redar derivatives to obtain th~ elements of the

nor—al matrix (A'A),

)
cj Finding the covariance mabtrix () of the orbit pacameters in the
next phase resulting {rom data in the current phese. T 1s nceded
to find {the combined estimate due to all the data after changing

to the new phase.

‘ Forming the elemenis of A'A 18 & rather straightforward summation
process on the radar partial derivatives. There ave no alterations in this

part from cne phase to another.

The second and third part will be da'scussed by considering some
particular examples., In genefal Ab is given epproximately vy (6.17) and
~T'by (€.18). These two expressions contsir. terms which arise out of the
presence of certain physical constants whose values are not to be estimated
from the data bul whese errors introcduce adéitional terms into the covari-
. ance matrix of cuantities which are.being esuimated. If one were tc neglect
. the effects of thuese constants, A, and I' are given simply by (6.5) and
(6.6) respectively.

The constants which introduce the added complexity may be claseed as
dynamical and non-dynamical. The former ones affect the observetions by their
effects on the actual orbit ltssif, (¥For example, gravitational conctants).
The latter ones affect only the obaervations and degrade the predictions of
orbital variables indirectiy by theixr influence on the initial conditions.

The non-Cynamical constants ususlly carry over from phese t0 phase while
dynamical . ones 4o not. For instance, e gravitational constant is dropped in
TN wail phaser evres,, the one in which it predominaxeé.

W\ Y
-
.
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We begin by defining the symbols

t, -
1
X, -
(ri’vi) -
r, -
Pi -
A -
Pl
Ri -
Ni -
Ai -

ue;uq -
g , 0 <
“e uB
C -
o

initial epoch of the ith phase (epoch); 1 =0, 1, 2 .. .vs
initiel ¢slimate of parameters to be estimated at ti'

inivial positicon and velocliy vector et ti.

a priori covariance matxrix of xi. We assume that Po is given.

rnysical constants which are not being improved at ti.

a priori

ovariance matrix of pi.

i+1°

product of the diagonal matrix of varilances for ith data
times the weighting matrix for the ith date

data bDetween ¢, and t

covariance matrix of the combined estimate of the true

PE
values X, _at ¢, .
e
covariance metrix of impact vector, B = b (xi, pi)

mass of the earth end sun respectively.

standard deviaticns of Bor Mg respectively.

ncn~-dynamical physical censtants.

Foxr the particular values 1 =0, 1, ¢ we define

. - |
0

J
i

A and P, have included in them the facto:r VVJ

-4 i

veighting matrix for the ith data, 4. e.\/§

-

X e
OX | | CTL T loxy |
0 N

e

where\w. 1is the
i i P

1Ai is repleced by A

i
ob W L
o, R T

’



NI wigy LS

-

) léb . {rb
= o = b
° l_upo 1 \ Py
o3 - 1 P ™ - '
Y o Ko Ao 0 ’Vl K.’L Al Pl
-1 -]
. { ' EP > ! “-l
ho ® \Ao Ao ¢} ) Kl = (AL Al * Y1 )
J =~ A'N QA 4 r"l J. = A 'N. A +T .
0 o) 1 1 11 1
o [ox, | o - %, |
0 \axol 1 gxl}
[ dx ) 3%
B = 1 ﬁ =
0 55; 1 551

We will use a shift from an earth to a sun centered conic as a=a
illustration of changing phase. The different cases indicate the simpli-
fications whicl result from (6.17) end (6.18) depending on the elements

of the vectors x, and pi.' Hence the cases are classified according to

i
the elements in the two vectors,
Case 1 x, = (ro, vo) P, =\ © (p = O means p is empty
¥ = (v Py = O |

Av o = t ;. compute J and K as given sbove from A ; define L, by

e

L, = K I K . = (6.3)
A‘c = Lo . . ' ' (60&)
Moo = 2 A5 A (6.5)



Updating to t, requires X, = Xy (xo) and

1
1" - C!D l‘\o (10 .

At %y, find L, from

L - X J.K

Ay = M AN

Case 2 X = (r, v

o o’ H-e) ’ . by = o)

X, = (rl,"vl) p, = 0

This is formally identical to Case (1). A has an added column,

gl M

%13_ ; L 16 T x 7 instead ofy6'x 6.
ue 0 ‘,I "'t”"
AL A T

* In equation (6.6), o, becomes a 6 x 7 matrix instesd of 6 x 6;

' ' be
the last column is % I

81 e

(6.6)

(6.7)

(6.8) -

(6.9)

pg
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\

Case 3. xo - (ro, . po -
a

xl = (rl’ ~";‘} p' ) pl it Q

Again this is formally the same as Case 1, AlAjdls mow Tx 7, T, 18 :T' x 7
instead of 6 x 6, axnd we have -

f(ry) o)

e | eeeaQil o (6.10°

<P1)7 ko ?02} | ( 1".
i Mg

The off diagonal'elements of (6.10) would not be zero if xl ie the initial

point in the sun phase because the astronomical unit uncertainties would

introduce exrors into Xyo However 1if Xy, Vwas the lasi point in the eartl

-phase, then the off diegonals would be zerc. . For the sake of simplicity the

second choice ié to ’qe preferred and will be a.ssume‘d for the rema.inder of
the discussion. h
L Al and A‘ol are formally the same as in Case 1.

1.'
. \'\ .
Case b x = (r,, v, u.) P, = O 0\
xl - (rll vl).' “5) p]. = o \

. This is & combination of Case 2 and 3., Hdeunce, no xeal di:fferences'are

involved, . : B
Cas2 5 X = (ro, Vo, co) g 'Po = 0 ‘ 3\

x) = (rps v e)

nt ..,
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Thig case is again the same as Case 1 with the addition of & non-dynemical
constant in each phase. o, ia modified to

fox,| 4
v 0
2 =
o] é )
% = s o\
'Y o i1
T N
Case 6
%y ™ (rg v,) P, = M, .
xl' n .(rl, vl) - o}
L, :.LB_ the same as (6.4); A, end A, exe
. .' ' ot ’ )
Ay = Ly + K A P Ao P, A K (6.11)
. t.
A m R Ly A 4 (.“o * }}o) AP (u.o + 2 Vo) (6.12)
In $hi; simplel cese, Po and Apo are Just
el
- 0-2
ot %, .
Updating to ¢,, 7
LT) e . . E . ) ’
. , . ,
", Pl - ao LO ao b (B + ao VO) l%po (8 +d° VO) . (6.13)
‘, '!';"..41' o un!pn, . '

{
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4
3}

At %,

.a l!ou
‘Also at %y
. . - aRl
1 B';Ts'
2
Apl = 0-5*5 .
Case 8.
,xo (roy v )

i
Lo» K3 ke (6,14
by = NIy N - {6.35
Case T \\
b4 s (I‘ v ) P = 1 \
o o’ ‘o ) e \
¥ = (rp V) P = Mg \
\
This is egsentially the seme 8s Case 6, L o Ao Abo’ are the same a8

(6.4, (6.11); (6.12),, (6.13). At v Ly 18 given by (6 1), A, end Abl\
/
are’ given Dy -(6.11) and (6.12) reSpectively with suhscript "1" in place

D = (Ne) co)

pl ‘ - (“5’ co)

8l



At % s Lor Ay A, ere glven oy (€.3), (6.11), and (6.12) respx\c‘oively;

(o]
r, 1is the same as (6.13) with \
“ \
B = °
A\
.\‘
/BRO\ \
Shg
Po =
3R,
3¢, !
A, i.l-is the same as (6.14); A, and A, eve
\ .
Ay = Lpe A g ) A ) (6.16) .
T A N A e T R S S R .,
! (6.17)
vhere §, 1s

-1
£ = K.Lrl (aoyo*so) '

If the epoch is changed in the sun phase from tl to tz, then 1‘2 is

‘found from
Py om0y (g - B A ) ol (B e (e g)) A (B w0 (V¥ 1))
| (6.18)
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It tz i8 the time of an actual midcour.e mancuver in which the
covarisice matrix of maneuver erroxrs is Ae (See Appendix T), then the
covariance matrix of the vector, %55 after tle maneuver is given by

PZa vhere

rZa = Pz +.Ae.

In general if X, and p_ are initial estimates in the nth phase,
i

e ——C———

expressions for Abn and rn+l will contain correlation terms, C,= 8% %p, .

Formulas for Abn and. Tﬁ+ become quite involved after chaﬁging epochs a

1

few times. They may be simplified considerably if one is uiiling to neglect
cerbain of the correlation texrms. If in the nth phase one assymzs that
\

C, = O, then (6.12) and (6.13) are valid (with the appropriate sugfcripts

of. course). If c. # 0 but C _, = O; then (6.17) and (6.18) hold.\ No

1
plans exist al the present for including moie then the (n-l)ét term. This
is perhaps Jjustifiable by asserting that the effects due o the constants
cught to be quite small in the first place. Otheirwise one should be ab;e to
improve their values from the data. If the constants are elenents of ﬁhe
vector to be improved, then they do not present these problems.

"Inversion of Matrices

In much of the foregoing, the final results are obtained after invefting
a. symmetric matrix. The method which is presently used foxr these inversions
is a recursive formula suggested by Lass and Solloway. [Reference 9 }

A x)
X' a

Given the matrix M

M




wits A”d

L0

For a matyrix of oxder n ';rith elemeats a‘.. .y start by setting Al
: ' v

~d L

S

xnowvn, M ..

-l

M

 f

B

B. y
Yy b

) Xy = 0oy 8y = Qe Substituting into (6.139) through (6.22)

yields the 2 x 2 inverse which is'then put back into the algorithm to f£ind

the 3 x 3 inverse etc., until the n x n inverse is obtained.
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APPFNDIX 7

MANEUVER ERROR COVARIANCE MATRIX

! In the simulstion of & hypothetical or en actual meneaver, tl.

covariance matrix of maneuver exrrors (Ae) is added on %o {h: Lracking

covariance matrix at the maneuver point. This append’x outlines in brief

the computationel aspects of finding A, (It is not intended to show the
formulations leading to the finsl results. For further detells [see

Reference 10/).

Let

t

e b

Ab

A

3

be the maneuver time;
the impact vector,

the covariance matrix of b due to tracking prinr to ¢,

“the spacecraft veloncity vector at time ¢,

a 3 x 3 matrix of partial derivetives evaluated at <.

Tae correction vector, 8V, is obtained Irom

Q

= OV = Qbb

5o} =%
- \‘Sv‘ .

The covariance matrix of v 1is

A,

= T¥aeQaroaal @

and the ensemble average of the square magnitude 1s

-

v

s VWV = QG = Tracea{xo r "c’:*"‘b] Q'

LA



RN

Wt

The erxror i the exccuiion ¢f the meneuver results from L independen’,

sourc#s,. The somrces 'are

3) pointing errors {subscript p)

(4}  eutonilot errors {subscrivt a).

.It was shown in Reference [1C]that the covariance metrix of meneuver

erTors (Ae} arising from the sbove sourges is given by

Lt

] :!/r"
2

SR R 22y 22
il = - - . > 3
el ‘(0'8 5P)Av+(crr ca)I‘-i-(O'?% +o 3 I

2 2 2 2 :
Og 3 T s O 1 O are verilancesa of sceler random veriables

x p’ Ta
essociated with each of the 4 %ypes of errors sbove ; which for our
purposes are assuned Lo be gi\'r}en. {They are required inputs for any
nidcourse simulation). The exact definitions of these quantities are
civen in Reference [11], o
I 3is the 3 % 3 identity matrix, The only remaining quantity which has

vy

not bLeern ,defined is I'. I' 1a the patrix 1"‘2;"' whose elements are

v
4
l’ vx vx v v "\’z )
" “"Zl —
v v
2
v v, vz
I‘ = -I-z .T. .
v
2
. v
e A
- (syxmuetric) —3
L v




Ay

Tue orthogonal transformation which diagonalizes Av will reduce each

element of I ¢0 linear combinations of intezrals each of which hus the.

farm
20
-3/2 2 T2 2 2
I . s ff"z“%‘—z R A oA | deandt
E'ng v o £ +n 4§ Gi cn c; ]

The value of this integral depends on the reletive magnitudes of “g’ . og.
. i

In general +the results are expressible in terms of elliptic integrals of the
first and second kind, see Reference 12. A subroutine for the evaluation of I,
using an elliptic integral subroutine, nas been compiled at STL in conjunction

‘with TAPP. - \

- 90 \
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CAPPENDIN 8 CCHPUTATION OF WLIGHTS

, Tae rules for computing the {inal least squares weights will be
degeribed in this appendix, These rules were specified by T. W, Hemilton
[Reference 13 Jfor use with the Deep Space Instrumentatiocn Facility but

are easily adaptable to other spplications.

The weighting matrix, ¥, eppears in the normal matrix, A'WA. TFor
brevity, it has been conveniently absorbed into the A matrix in most of
thi. writing (i.e., we replace A with\A;A). For our purposes, we need
to find btoth W and its product with ¥, the diagonal matrix of noise
variances. VW itself is a function of M. Hence we indicate the procedure

in the program for computing the elements of M and the formula for finding-
the final weights fraom it.

The elementis of M axre sums of variances from indzpendent noise scarces.
These sources sre tabulated in Table 4 for the different types of deta from
a typical earth based tracker. If the noise from & particular source is
correlated with a correlation time greatér than the sampliag intexv 1, then
the corresponding variance is degraded by the scale factcr 7/8 where T 18
the correlation time and s <the sampling interval.* TFor a given dgta'
type, the total variance is given by the sum. '

¢ = L 0% + % 0% = | (8.1)

where .he sum on 1 1s over all sources such that Ti:§ 8 and the sum on J

> 8.

J

is over sources with

% See Reference[ 14]for details of replecing correlated noise with
"equivalent-or-worse"” uncorrelated noise,

91




The final ¢'s msay or may no% be constants, ¥For example in the
measurement of the two angles 1in a polar coordinate system such as

azimuth and elevation or hour angle and declinaticn, we have

g

Y ST {8.2)
, \
where ' \
@ 18 the ezimuthal or longitudinal angle \\

©  is the polar or cone angle

o 18 the standard deviation of au anguiar measurement at
* 9 = 0 {azimuthal or equatorial plane). o is calculated

from (8.1)
-Since o‘¢->og" as € -~90°, measurements of § are weighted much less in the

reglon where § becomes ill-defined.
. y

As a secord erample, if the ground based oscillator freguency drifts

at & rate f in the measurement of two way doppler, then the drift causes

wn error in the measured doppler over the light trexsit time interval of

8 w 2f

Ol

vhere C is the velocity of light and R is the slant range. The corre-
sponding range rate errox"f is

c £ :
8R = '-f; 3t n(-f) R"O‘R

ol

In this case, the standard deviation increases with the range.
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The variance foraulas for a spacecralt Dbased tracker are listed

helow for each individual “ype of observation.

1) Clock Argle {A) and Cone Angle (B)

.2 2 2 2 1 '
= "2
N {O‘J oo, ot (KA c) } m (8.3)
2 2 . 2 o .
o = {MJ + Gio + {x, ©) } . . (8.4)

where

z : .
(44 3 - variance due to electrical jitter
[ - variance dne to readout -

KA,KB - adjustable constants | ) -
c - planetary angular diemeter from the spacecraft.

2) Occultations (o, 8)

2 [ 2 2] 1

o = |g, + (K. C) + (8.5)
& L J ¢ J 0082215 \“§\\
2 (2 . (k. ©)% \

0'8 = ch + Kb N
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3) Planetary Anguler Diameter {C)

a5 = (K o) ey -

The least squares weight to be used in the normal matrix is

-1
2 2,
L R C

18.3)

vhere cfc 1s typicelly obtained from (8.1) through (8.7) tor the various’
types of dats. sz( and fK are adjusteble input constants for the

individual data types,

In addition to W, the matrix WM 1is needed to find the weighted -
léast squares covariance mstrix, from (8.8) the elements of WM are

2 . O'KZ . . ! . .
(WM)K - 2 2 i : ] " (8'9)
' B + T % | a -

9k



Table 4. Typical Noise Model for Terrestrial Tracker

{ B T
Data Type Noise Source (Typicel Values) (Typicel “elves)
v 1
engular readout error ! .OO3° 10 seconds
zeasurexent iangenna defiections | .OG?O 5 hours
(each type) | Jitter | .01° 10 seconis
{
\
doppler osciliator dritt - % R T
™
N ES
C
shift i round off — e
: 2 \3 1T T
" _system error 5R - 10 seconds
|
, i -
range :clock error KC R 1 hour
j system errcr 5 meters 5 hours
round off , 10 meters 10 seconds
R ‘18 the slant range
T is the counting interval = .0l kilosecond unless otherwise specified
(%)r is the percentage drift rate = 81 x lO-lo per kiloseconds
C  1is the velocity of light = 2.99795 x 10° km/sec

is the oscilator frequency = 9 x 1012 cycles per kilosecond
10

H

K is a constant = 10"

8R  is velocity = 1.0 x 1074 km/sec unless specified otherwisc.
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APPENDIX 9 OUTPUT FORMATIG

This sppendix describes the formats for the verious output print routines.

Thege are;

(1) The input print

(11) Change of phase print
(IIX) Rise-set print

(Iv) Coarse accuracy print
(%) Fine accuracy print

(vI) Trajectory print (the format for the trajectory print ia
given in appendix 10 since 1t contains a considerable number

of independently defined quantities). >

In its present form TAPP has five output options,'selected by input flags;
and consisting of different combinations.of the printout lists I to Vi*. The

_options and their contents are:

a). Trajectory only.
List I; 4tems 1, 2, 3, 4, 10 P

List VI . |
* {The contents of the rumbered items are given in the list) .

b) Rise-set only

List I; items 1, 2,3, 5, 6, 10
List IIIX

c¢) Rise-get pius trajectory

List I, 4items 1, 2, 3, 4, 5, 6, 10 .

List III, VI

* A special midcourse analysis output due to C. Pfeiffer of JPL has been

requested and will be incorporated as a sixth printout option.
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d) Coerse accuracy

(no midcourse maneuvers permitted)

List: I - all applicable items

Liste II, III, and IV

List~ VI at option )

4) Fine accuracy

(midcourse permitted)

1

Iist. T =« all applicable items

ists II, III, and V

List-~ VI at option

An inspection of list (I) will help in understanding the input requirements.
We now give the format and contents of the lists I through VI along with "
explanatory notes for each. Typical quantities will be iuserted in dlark

SN
-

spaces whers/ﬁertinent.
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7.1, INPUT PRINT FORMAT

o R

(all words.in capital letterc are printed on the ocutput) .

Items

(1) 6 59 1 1 00 00 00.00 JD  2436569.5

PHASE SEQUENCE earth sun Mars
(2)  INTTIAL CONDITIONS earth CENTERED equatorial PLANE
. x ' * r v -
Y g 8 r.
z z o ‘ z

(2a) V-INFINITY INPUT

(@]
=

¢t

[1at

3 02 e
% i To2 b
as XL t23 |

r fa3
R

(3) TARGET CONDITIONS

"~
14

m ' . 'tf (da;rs)

R

SEARCH CONDITIONS

SEARCH ON -initial conditions

COMPONENTS v
r

. oz

P

'SCALE FACTORS 1
10

p

N W

8



(&) ° PRINT INTERVALS -

STRT STOP SPACII:C
5 60
5 100 14400
100 110 160

(5)- TRACKING STATIONS

'STN CODE LONG LAT ALT LIM-I LAM-I =~ MOD-I
Gldjet - 3 =120 3L .5E=L 1 2 k]

(6) TRACKING SCHEDULE | .
3TN INTL TYPE D-STRT LAIT-1 D-STOP WAIT-2 DLTA-D SPACNG

3 1 ~ o 5 T
3 | 120 . 1200 - 1200
4 120 ~ 120 1200
2 T 100 3
6 - . 3600 koo . - 7200

(6a) SPACECRAFT OBSERVATIONS

TYPE . ~ D-STRT D-STOP SPCNG PLNT STAR
‘ A L0 100 5 VENUS ~ CANOPUS
B 40 100 5 VENUS  CANOPUS
c OPTION 2 '
D 20 40 2 ., VENUS
E 20 " 40 2 VENUS

TYPE C VILL START WHEN (OPTION 2)
R LESS THARX 4.0

SPCNG 5 10 15 25 . 30 . %0
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(1)

PR SRR, TS

(8)

(9)

el B Be B w SERSL T L 4 . e

- o4

RETR

ADJUSTABLE PARAMETLRS

x y z X y
DATA RIAS
STN TYTE D-STRT
3 3 0
A PRIORI KNOWLEDGE
UNCORRELATED VARIANCE
M .1 E-Q
CORREL ALt
GROLP 1  x y z (for example)
T (%, 2)
SJROUP 2 x ¥ 2 (for example)
[o (% ¥ 2)
LEAST SQUARES WEIGHTS
Option
STN YR F OMGA
3 3 1 0
4 1 o
6 c 1.0

SPACECRAFT OBSERVATION WEIGFTS

A 1
D 1l
g 1

N

100

¥{XED PARAMETERS

D-STP

Hfs e
UNGURRELATED VARIANCE
pn . l E-8
(o] c’l E-','l.l
e
. /' l
SGMA e
/’/
. 5 ’//
e
] 5 .
1.0
.05
.05
.05



(%)

(1)

CONTROLS AND OPTIORS

Y23 INTERCERT

STEP SIZE CONTROL

OUTPUT OPTION

¢

g

E

SLICES 2

PRINT INITIAL CONDITION COVARIANCE - no

TANDI TETMENTS
-—AVA VA L I AR
ECDY a e
J.D. X y

MANEUVER PRINT

HYPOTEETICAL

 ACTUAL

S-5

S-R

COMPONENTS 2

D-STRT

26
65D.
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X y 2
' D-STP SICNG
100 i0
12H

\
-

20  14.508  FROM EPOCE



(1)

(2a)

(3)

Explanatory Notes to Input Print Formst

All units used in the initiel princout will be in megameters for
length, kilometers/second for velocity; kiloseconds for time and

degrees for angies uniess otherwiee noted.

GD ~ Gregorian Date of epoch - year month day hour minutes seconds GMT

JD - Julian Date of epoch - days
PEASE SEQUENCE - sequence of centers for itrajectory

Initial Conditions - position and velczity at epsch with respect to
' L LaOn3 I N E

the given primary center and reference piane. Both Cartesian and polar

coordinates are printed.
Items in (2a) will be printed cnly if the initial conditions are given
in terws of velocity at infinity orn a geocentric escape hyperbvola. ‘

¢, = (hyperbolic excess velocity)z = twice vis~viva energy

LAY

7

= declination of asymptote
- 1right ascension of asymptote

Q0 o
¢+

~ launch azimuth

e o
N
\

8, - Jaunch declination ° ,,"
XL - launch longitude

tJ

Bee appendix (5) for the remaining quantities.

Target Conditions and Search Conditions

Items in (3) will bte printed only if the option to searsh has been

elected.

my, My - miss components

t, - total flight time

SEARCH ON - may be initilal condivions or velocity vector at infinity
(the latter on geocentric escape only)

COMPONENTS

The components to be varied will be printed if they are specified.
Otherwlse the machine finds the search parameters with the
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Al “ t.‘

"emalless" magnituce of change. The number of components specified
rmusé egree with the nuwrter ol target corlitions prescrided (2 oxr 3).
If there are twd, tvhey may be
2 comporents out of 3 of Vq).
initial conditions (polar or Cartesisnm).

P

OoN

2 components out of O C
I7 there are three target conditions, all 3 elements of Vdj st
be varied, but one can still choose any 3 elements of the 6 initial

conditions.

SCALS FACTORS
If the machine firds the perameters to change, 1t will select
(2 or 3) quantities such that the magritude of tne correction
vector is the smallest. The scale factors (dimensionless) are
1o allow for changing thne relative weights on the independent

variables (see appendix 5,.

(h) Print Interwvals

(

\

)

Items in (4) are for use with "trajectory print cnly" cases. A seQuence
Ty

of start, stop time (days) and spacing (minutes) are given. .

Tracking Stations

SIN < name of statica

"CODE - 2 digit iderntification number for station

LONG, LAT, ALT - longitude, latitude, altitude.

LIM-I -~ 1 diglt code to select from 10 station limitation models

‘ stored in program. Each table specifies a minimum elevation
angle and a maximum range for the tracker.

LaM-I ~ 1 digit code which selects station location uncertainty
model {3 x 3 diagonal matrix) frcm a total of 10.

MOD-I - 1 digit code which selects station radar noise model from

a total of 5 stored in the program.
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P

1

!
g

(6) recking Schedule ~ \\\
T - Station code, sce (5) S \\
INTL » Time interval glver by D-8TRT aud D-sTRR . _\\\
1YPE - Type of redar observation identilied ag follows:
Runber Tyoe . ' . \\
1 ' hour sngie : \
. 2 declination
3 elevation
b azimuth
5 two way doppler

D-STRT

" WAIT-1

(a)

D-STOP-

WAIT~2

DLTA-D

SPACNG

9 slant range

first day of the intervel given by number under INIL -

. (1 in this case) measured ir days from initial epoch.

walt time between rise and beginning of data on each
tracking -day. (minutea)

last day of 1nterval in days from initial epoch.

“time in mimutes before ‘set on each tracking day to cease

racking.

number of days between tracking days.

%time between data points. (seconds)

Items (6a) are printed 1f there are to be spacecraft observations.

TYPE o

types of observation are identified by the letters

Letter - Type
A clock angle
B ) cone angle
c ‘placetary diamecter
D occultaticn declination N
E occultatica right aégension

104




Naws

”

4

\

(9) least Squares Weights

D-STRT = days from initial epoch to take first oovservation.
D-STOP - days from initial epoch %o teke last observation.
SPCNG - days belweeu each observaticr.

PLNT - reference planct Jc¢r spacecraft observations., (See Appendix 3)

STAR - 1reference star fox spacecraft wbservations. Canopus or input.

TYPE C WILL START WHEN - In planetary diameter measurements the start
time may be specified as time when distance of sgpacecraft to
planet i1s less than some value R. (in megameters)

SPCNG - times of C observetions after the first observation (hours).

-

Adjustable paremeters are the elementis of the vector to be improved. If
the elements include data bilases, the observations containing the bias are
specified by: '

SIN - ©Station code muuber. ’
Type data - cee note 6 for correspondence.

TYPE -
D-STRT - OStart day of >bservation - days from epoch.
- . D-8TP" « Stop day of observation - days from epoch

e)

A priori knowledge

The adjustable and fixed }arameters are divided into groupg such that .
the groups are uncorrelated with each other. The va*ianceé\?nd covariances

are given with the following units: \\»
Xyz - | megameters
xXyz - kilometers/second
mass constant - percentage error

\
velocity of light - percentage error :
station coordinates~ degrees for angles, megameters for altitude. .

Ty

Y

£ and ® are defined in Appendix 8.

\

SCGMA <« The final standard deviation obtained from the noise model

Similar definitions hnld for the quantities under spacecraft observations.
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(10) Controls and Options

(11)

YPZ INTERCEPT - 1 digit number giving nunber of crossings of target
orbit at =stimated time of intercept.

STEP SIZE -~ eccentric snomaly increments teken in each phase in

computing orbit

OUTPUT OPTION - may be any one of options (a) to (e)J 17 (&) As
selected, it 18 necessary to specify SLICES, a number which subdivides
a tracking day into intervals for print purposes (see note V(1) below).

PRINT INITIAL CONDII'ION COVARIANCE - The covariance matrix of adjustable .
parameters will not be printed unless requested by qptioh. o

INPUT IS V-INFINITY - +*he driver and the cons.raints golng with 1t muatf
be.specified. (See Appendix 5.)

INPUT ELEMENTS - the osculating elements (classical or position ezd velw
ocity at'a given time, JD) may be i1ead into the program replaciag the
constants which are tebulated in Appeadix 2. K

Maneuver Print

Items in (11) will be printed if there are hypothetical or actual

maneuvers (only one ectusl maneuver permitted)ﬂ

HYPOTHETICAL - D-STRT D-STP SPCNG = :specifies the start time, stop
time and spacing of the hypothetical naneuvers. (units are days for all
three).

ACTUAL - time in days, hours, minutes, and seconds from epoch for

epoch for actual maneuver.

§-8, S-R, S-?, S-A - standard deviations assoclated with shut off,
resolution, pointing, and autopilot.erron const&nts:reapec%ivaly. '

COMPONENTS - correct 2 9r'3 components.

-—— .
PP L - . P
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" CHANGE OF PHASE FORMAT

(1) 6D JD
' (2)' ELEMENTS WRT =~ NEW CENTER
X ‘ x a 2

w

. A ML
(3) ° spcT WRT OLD ' g OLD W% NEW
X X X x
Y . Y Y ‘¥
2 z % a

(4). Abo - : . : | A

(5) Ay

Explanatory Notes to Cl .nge of Phase Format

" (1) GD - .Gregorian date - year month day hour min sec GMT
'JD - ‘Julian date-days
(2) ELEMENTS WRT NEW CENTER

Cartesian coordinates at epoch
Classical elements at epoch

( 3) SPCT WRT OLD '-- gpace craft Cartesian coordinates with respect'

to old center.

OLD WRT NEW = old cnter Cartesian coordinates with respect
to new center. ' ' '



(&) Npor Npp - covariance matrix of target peramsters before and

after changing phase.

.(5) Axé’ /\xn - covariance matrix of Cartesian coourdinates before
an@ after changing phase. :
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III, RISE-SET FORMAT

YEAR _ )
STN RISE : T-TO " SET T-TO FMAX

3 12 14 13 41 15.6 43.2108 12 15 O1L 41 15.6 43.7108 5L, 82

Notes:

Rise-set times for all stations are tabulated in chronological order
using the format above. The day interval is given by DLTA-D unless

RISE - ‘rise time in month day hours minutes secopds.

T-TO - +time from epoch in days.
EMAX . -~ maximum elevation angle during pass.

COARSE ACCURACY FORMAT

(1) o¢p | T-TO -

STN 3 TYPE .3, & RISE or SET
.(2) SPCRT WRT MAIN x y z X ¥ 2
EARTH WRT SUN x° y 2z % ¥ 3
TARGET WRT SUN x y 1z Xy 2
(3) A, . LaM1
LAM 2
THETA ‘
(1) A,
Notes:

(1) GD - Date
T-T0 - +time in days from epoch

In the coarse print, the output oceurs &t the beginning and end
of each type cf station; '
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Pt R

PRI L

STN designotes the statlon, TYPE the data type, RISE or SET
~ tells whether the prints go with the beginning or enl of .a pes

(3) ﬁm - target covariance matrix

LAM1l, LAM 2 = eigenvalues of upper lef{t 2 x 2 iﬁ Ab’
THETA - angle between major axis of aispersion ellipse in .

ml, m2 plane and the ml axXis.

(o]

"'FINE ACCURACY FORMAT

(1) oD . . T-TO

SLICE - 3
(2) -~ (&) same as coarse format
(5) MANEUVER

MIT

Cix . éZx

ely : . e2y.

1z . . %2

_NON-CRTCL DRCTN

n
X

110
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(4) A, - 4nitial condition covariance matrix - at é;%son,on;y.

\

o o
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Notes on Finc Accuracy Format:

(1)

(2) -
(5;

’ Ne ° covariance matrix ¢f maneuver errors (Appendix 1)

GD - Date
T-T0 - time from epoch (days) _
GD and T-T0 will refer to the time of the maneuwver if the print time is

a maneuver time.

SLICE - Each tracking day will be divided irto N slices. (intervals)

The fine output i1s printed at each dividing poliat except the very first. .

The fina output is also printed out at each maneuver point (hypothetical

/
or real). : : . |
. | | 5
e

(L) These items are the same as in the ccarse format.

MANEUVER - the items in this group ere printed at the maneuver
polints. Maneuvers can only be requested along with the fine
printout. o

MIJ =~ <the impact vector sensitivity matrix (%%) aly the maneuver
‘time (sec Appendix L) '

hl’ o1 h - magnitudes of the rows of MIJ.

unit vectors having the same direction as the rows of MIJ.

Cix? eiy’ ®z
NON CRTCL DRCTN D ny, a, - direction cosines of the non-critical directiomn.

A, = covariance matrix of required velocity.

/\b + A ve - covariance matrix of target parameters after t e maneuver.
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APFENDIX 10 TRAJECTCRY PRINTOUT

In 4his appen@ix, we give a key for the quantitites which are printed
1 a trajectory alone i1s to be computed. Following the key, tle symbols
are defired and the formulas for computations are either given or referencedl
to some other section of this report. All units will be in megameters for
length, kilometers per second for velocity, and degrees for angles (unless

otherwise stated).

The .printout along the trajectory will depend vn the phase.' waaver,
the initial print in each phase will be the same. _— -

I. Priat Key
" Initiel Print in each Phase;

~(a) (oD N I R RP 70
(n) ) . la o '}"e . | i. | f ) ' MB
(e) p o« _

() 'c3 ¢, Qq £ Q P
{e) Voo x Vooy - Veoz % | %

Printout along the trajectory:
Geocentric Phase

- \ . '-.
(¢ to’ks (¢ t0>d

(1) x Y S X ¥ %

(2) r . 5. .« v r p

3y -~ = g e ¥ Y o
R

Ve



Heliocentric Phneose

(t'to:ka (t'to}d
(1) x y 2 X ¥ 3
‘ geocentric
{(2) x ) o v o 5
(3) x y z x % C g
. heliocentri

(4) r 8 py \' r b

(5] EP3 EYM SPC TR spr  STP

{6) LOE LOT EMP

Target Phase

(a) B.T B.R B t,

(b))

(b) M}l M‘z M3,

te) M M M

21 22 ! .
¢ h M g ’
(@) M3»1 ' MBZ . 33
Syl -
- .{.- v ,
(1) ¥ y z X Y Z
. geocent. ic

(2) r ) (04 v . r T

(3) X Y z pd y oz
. targetcentr
(1) r B 3 v r T

(5)-16) sawme ag in heliccentric phrse
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II. Definitions

Initial Print:

line, col. Symool )
al GD - Geogorian Date (Y=2ar Month Day Hour Min Sec GWI)
a2l JD « Julian Date (days) |
&3 Q' - name of primary center
alb RF - »reference plane -~ eclintie or equatorial
as . T « type conic - ellipiic or hyperdbolic
 bL-bS a, 'e, 1, 8, ®, ¥ - classical elements
cl p -=- semi latus rectum
ol . T = time of perigee passage
dl 03 - twice vis-viva energy
&2 Cl = angular momentum
é3 ¢ =~ distance of closest approach
ak : i = +true anomaly
a5 R - a(1+el
aé P - period

Line e is printed only if TC is hyperbolic

Lt v v \'f - co yof ¥
ei-23 o 3’ oy ‘oz onponen 5 © ~ _
- _;/
a 4 a Q'p V -
el . right ascension of .
o
e5 85 declination of Vco P
// i
//
P



11-16
z1-26

31-36

L1-46
51-63

\
Geocentric Phase \\

\
- - - time from epoch in xiloseconds and days
(e-t_). o (e=t )y time from epoch in kiloseconds u q\ y

XyzXy2 = goecentric equatorial ccordinates
r®a VI £ - dinertisi geocentric pular coordinates (eqnatdﬁial)

r¢gevy o ea~th fixed geocentric¢ polar coordinates

Heliocentric Phase

SN
]

Xyzxy geocentric ecliptic coordinates

r 8G&G VI L - same as 21-26 in geoceatric phase

Xy zXyz = heliocentric ecliptic coordinates
rd3a A2V I XL - Leliocentric polar coordinates (ecliptic)

These are celestial angles which are defined in the computational formulas

Target Phase
B.T - component of.miss in the ecliptic (Lmpact parameter)
B.R - component of miss in B plane normal to ecliptic"
] - magnitude of niss
" t, - total flight time 4
Mij - miss coefficlents matrt.: elements defined helow in Secticn’I;I

XyzXxyz = geocentric ecliptic coordinates

rd5avrz inertial geocen*ric polar coordinates (equatorial)

XyzXxyz =~ target centered ecliptic coordinates

rpAVIE target centered polar coordinates (ecliptic)
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dillvie'. aiailv

The forrulas for lines bt aud ¢ are teo be fowd on page 32. To define the

remaining quantities, we use the notat® s cn page 32.

C = SR C, = -‘H:
l \/O'Tk") J- a

q, &, P are defined on page 34 and f on page 32. For the outgoing phase,
(e.g., Earth)

1 [

-

— o — l 2 —

1 . \ [ . s

V, = l |\f—2—:_i 1»- (yw-f-Je -lxa))r+(yw+xw Ye -l)VJ
e |a e .

For the incoming phase (e.g., target body)

-1 S r

ot . - ) —
o - - \ - - - 3
Yo = T > (7= Ve =15 ) F+ (v, - x, Ve - 1) 7 J
e ,a.! e¢ -1
where p-T _ 2 2
Xp = P Yo = ro- X, B
-y X + er
% = ——Sl » =
rNyp. r\yp
-1 v
?i as = t&n VM .\
anx \
- )
-1 ‘ooz \

Geocentric Phacse

In the geocentric phase, line 1 is from the ocrbit, line 2 is given on’ e\z,ge 29,

line 3 i3 the same as line 2 except that the velocity components ie and '_;re
. o\
repiace X and y on page 29. -\

r:‘ce'—!— r:'c @ & y | A

- 'S - r ‘ \
Bk ..
- - ‘

W = angular rocation rate of esarth

a = equatorial radius of earth
116



Heliorentric Phase

Lines 1 to 4 of the heliccentric phase output requires no further

explanation. The celestial angles are defined below,

B = heliocentric position vector of probe

Let © = geocentric position vector o2 probe

P = heliocentric position vector of target planet
e = heliocentric position vector of earth

n = geocentric position vestor of moon
8 = .direction cosines of Star Canopus

All vectors are in the equatorial system unless otherwise indicated.
The engles are computed as follows (r' meens trenspose of r, ete.),

EPS, earth probe sun

~] r; R .
EPS = cos TR

EPM, earth prode moon

1 _r (r-m)

EFM = cos
. [*1 [x=m|

SPC, sun probe Canopus
Ll -R's

SPC = co8 —TR'-—

TPC, target probe Canopus

. TPO - ¢°5-1~.—8.M

{p-R |
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SPT, sun prcbe target

-1 R' (R~
SPFI' w cos8 . RT1R-D|

STP, sun target ‘probe

STP = cos'":.L ..L_.(P%

ol Ip

I0E, Celestiel Longitude of Earth

ey, e are in the ecliptic system

€

. -1 e
IOE = A = tan (l)
. X

LOT, ‘Celestial Longitude of Target Planet

Py By ere in the ecliptic system

. R
S 7o I tml(l)
px

EMP, earth moon probe

1  n' (m-r)
|m| jm-7]

EMP = co8

1i8 .



Target Phase

In the initial print of the target phase
—B-O-T- - ml

= m,, Bee rage 54 -

ot
oY

The matrix elements M are partial derivatives of LIRY and t 2 “with-

1J
respect to the polar velocity coordinates ut infinity on the geocentric
escape hyperbola, Except for minor modifications, the formulas for these -

derivatives are found in Appendix k4.

'

In addition to the foregoing, all. the input constents for the
trajectory will be printed. The pertinent constants' ayxe’ tebulat: dcin
List I of Appendix.9: - ' o ' '
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APPENDIX 11 INPUT REQUIRIMENTS

In order to use the program, a rather large number of input quantities
must be specified. The required inputs have been arranged approximately in
the gequence in which they are required in performing the functions of the
maln program blocks, as shown in Figure 1.

In cases where multiple options are available in the program, the
option desired must be indicated in the inpvt. Options which control the
over-all cperation of the progrem have been arranged ipto one group termed
TAP? Ipnput Controls. Other options which confrols specific porticns of the
program are located in the appropriate input cection pertaining to that part
of the program.

The TAPP Input Controls are:

1. Input Option Flag

2. Trajectory Clasé Flag

3. Target Elements Flag

4, Midcourse Maneuvef'Flag

5. Search Option Flag

6. Observation Type Flags (4)
7. Phase Change Sequence

8. Step Size Control

9. Print Control Option

Let us now consider each control in sequence:
"1, Initial Condition Input Option

.Initial conditions to the program can be specified by various

sets of elements. Each set 1s identified by a single aiglt (1, 2, 3, or 7.

2. Trajectory Class Flag

Trajectories are divided into two classes: Class 1 and 2. A
Class 1 trajectory is one in which the interception of the target by the
spacecraft occurs when the spacecraft first encounters the orbit of the
target planet. On a Class 2 trajlectory, encounter takes place on the

second crossing of the target orbit by the spacecraft. The specification |

of the class then servea to determine which intercept poin% is desired.
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3. Target Elements Flag
Tc ensure that end conditions of a mission be as ciose to realivy
as possible, one may occasionully desire to input e particuler set of

osculating elemen*s of the taAget planet rather than empluy the builte
in target orbit formulas. A flag at this stage indicates to the program

that elements are to be specified as input.
k., Midcourse Maneuver Flag

A flag here will indicate to the program whether a Midcourse
Maneuver is or is not to be executed. TAFF, Mod I, provides for the
execution only one actual midcourse maneuver in a mission. Any number
of "hypothetical” maneuvers as described later can be included. TAPP
Mod. II, undcr development, wiil allow multiple midcourse and terminal
rmaneuvers to be simulated. |

5. Search Option Flag

This fleg indicates whether or not a search is to be performed
to adjust initial conditions to yleld specified terminal cond‘tiona.
Digit "one" indicates search desires.

6. Observation Type Flags (&)

For any given mission, the spacecraft may or may Aoc be required
to make measurements, in addition to the tracking from earth beased
stations. This "may" or "may not" condition is determined by flags-
indicating which type of measurements the spacecraft is to make, if
. any. In addition, e flag is required to indicate waoether or not.
earth based tracking 1s required. -

T. Phase Change Sequence (Up to four phase changes)

The program computes the trajectory of a spacecraft by means of
the "patched conic" method. For this reasen, it is necessary to
rpecify vhich planets the mission is likely to encounter, and in which
order. As an example, one sequence could be Earth-Moon-Earth-Sun or
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Earth-Moon~Sun~Planet. Any sequence up to four ie allowable. The following

code numbere are used for the central bodies;

1.
2.

Earth
Sun
Moon
Venus
Mars

- Jupiter

Saturn

Arbitrary

The trajectory is not deviated 4if the velidcle dies not enter the

planets sprere of action.

8. Step Size Control

This control determines the intervals at which position, velocity
and necessary pertial derivatives are to be computed along the orbit
through contrel of the increment of eccentric anomaly, in degrees, to

be taken.

Note that this input does not control the printout interval,

but rather the computirg step size over which interpnlation 18 used for
points called for by the prin?out interval.

9. Print Control Flag

Controls format and content of printout, are described in Section V
of this Appendix, and in Appendix 9.

-

Following the TAPP Input Cbntrols, the inputs listed-bglow must be supplied:

I. Initial Conditions

4.‘ \\

Y
Y

The trajectory to be flown may be specified in terms of\either injection

conditions, or launch conditions:

Injection Con” .ions

(Option 1)  Orbital elements: t, &, e, 1, 8, ®, M
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(Cption 2) Rectangular coordinstes: %, X, ¥y, 2, %, ¥, 2 \
(Option 3; Spherical coordinates: ¢, r, &, &, V,( , T

Al angles are given in degrees. Tae units of length and
time can be given independently and are entered by choosing
.a two digit code from the following list: ;

Code Length Code Time

1. Feet 1. Seconds

2. Nautical Mile <o Minutes

3. Kilometer 3. Hours

. Earth Redii k, Days

5. Astronomical Ualt 5. Kilosecondé

6. Megameter

Launch Conditions (Option 7)

The inputs to this option are:
1. . Launch Conditions

Launch Azimuth (inertial) in degrees
Launch site Latitude (geodetic) in de rees, positive north
Launch site Longltude in degrees, positive cast

2. va: and Injection Condition Specificétions

Flight Path Angle (inertial), in degrees

Vis-Viva Energy, C3, in (km/sec)2

Geocentric Radius, in megameters

Declinétion of Asymptote, 85, ia ¢eg., positive north
Right Ascension of Asymptote, as’ in deg, positive eact

3. Coast and Burn Conditions

Time from Launch to Parking Orbit Injection in Seconls

T4 of Second Burn in Seconds ‘

Angle Swept Oat Between Launch and Parking Orbit.Injecvion, in deg.'ees
Angle Swept Out During Second Eurn, in degrees

Time (Gregorian Date of Lawach)
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II. Target Conditions and Search Contrel

A.

pE=Rub oy DT T Y I3

Target Conditlons

If search is to be performed, then target conditions mey ve

specified as:

BC

1. Ml and M2 end time ¢f Ilight whore:

Impact parameters Ml and Mz are in megameters and,
Time of flight in days, or,

2. M].. and MZ only
- If the orbit is elliptical, then the final M‘L and Mz are
specificd by the rismt ascensioa and declinati‘ég with respect
to planet. : \
Search Contrel \

\
The parameters the program variez to meet the specified té\(ﬁ,et

conditions of A (See Appendix 9, Section (3); Target and Sea.v-;g)‘g\
Conditions) may either be A\

or;

‘\\‘

. \\..
a) +the parameters specified may be any (2) or (3) of the \
6 initia) conditions of position and velocity or, '

1. Initial Conditions

b) 4if the paremeters are unspecified by the user, then the
rrogram will select the paramsters with the small-st magnitude
of change. ' '

2, Vo° Vector - The parameters may be

a) Unspecified. The progsam will chenge ail 3 components

if 3 target conditi.ns are specified, or 2 components ylelding
the least magnltude of caange If 2 target conditions ave
specified, or

b) Specified. The user specifies cny 2 of the 3 components
of the Vm v.aetor. '
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3. Scale Factors (6), cne for each of the initial conditions. These

ere the welghting factors used when the progres is a.lowed to choose

wnich iritisl conditions 1o vary.

I1I. Cbservablies:

All options here may be used simultaneously, and according to the

filags certein or all o the options can be deleted from a computer rurn.

A.

Eax’h Besed Trackers (Type A Observationms)
4 Statlion Fumber

A two dlglt muwder will specify the station longitude,
letitude and altitude from & prestored table. New station
coordinates (e.g. lunar hased stations) may be entered in the
tabie if desired.

2. Station Covariance Model

. A one digit number will select the prestored station uncertainty

cpﬁariance natrix to be used for the given station.

- 3. Stetion Limitations

A one digit number selects maximum renge and minimum elevation
angle limitations from a pre-ctorel tsble. A zero elgnifies "no

limitations”.
L.  Noise Model

A one diglt number will specify a certain storsd noise model
for the station. - This noise model specifies the variances
associated with observation types.

5. Data Type

A o“e'digit nunber will signify to the program the observation |
type the flagged station 1s to measure. The data types available

are:
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code j;xge

Hour Angls

-2

Deciination

f\.‘

Eievation
Azirath

Two-way Doppler

O N & W

Slzant Range

6. Least Square Weighting Option (1) or (2}

Option {1) sets all fiJ =1 sand @, = 0 for the

final weighting..

Option (2) weights according to input fiJ &nd a&a
(from 7 below).

7. Least Square Weights (f, and w, )
13 13

The weights fi and aﬁj are used in the program to
manufacture the final elements t0 be used in the weighting
matrix. The 1 th index cbrresponds to the station number and
the § th index corr~sponds to the data type. (See % and 5,
respectively, above for- description). The npmerical values of

the weights will be entered as inputs.
6. Starting Day

Starting day, measured from Oh UT on launch date, will
indicate to the program the day the tracking is to begin.

9. Waiting Time

Tracking will begin this number of minutes after the

spacecraft has risen over a particular station.
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10. Z2nd Day

: ot e Eear h
Pate on which tracking is to cease, in days -from O  on

launch date.
11. Waiting time before set

Tracking will cease thics many ndinutes before the spagecraft

sets over a particular statiocn.

Nace Tud-AavivraT ~

|

This input is the spacing between the tracking per;odsuin
Gays. For example, 1 = track visible puasses every day;
3 = track visible passes every third day. '

13. Sampling Rate B

-~

This input in seconds will indicate the rate at which the

-

observations are taken by the tracking sts*ion.

Note: A maximun of three tracking patterns is ailowed per station.
Shouid thls prove too few in a problem, the same station may be
given more than one set of station numbers, for 3 patterns/station
number. '

Clock and Cone Angles (Type B Observations)
1. Observation of Star (1) or (2) (Choice of one)

(1) An input in the form of a flag will signify that
Canopus, whose right ascension and declination are stored
in the computer is to be observed by the vehicle during
the mission according to the specifie@ vattern.

(2) An input in the form of a flag here will ~ignify

that another star has been selected and the position in

the form of right ascension (hours, min, sec) and declination
(degrees, minutes, seconds) are to be provided as input.
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2. Obgervation of Planet . hoice of one)

Input there wilil te an integer oignifying wnich of the
6 planets, whose code digit is listed below, is to be selécted.
The heliocentric positions o the respective planets are

available from the ephemeris .crticen of the program.

(1) Zartn

(2)  sun

(3) Moon
(L) Venus
(5) Mars

(6) Jupiter
3, Noise Model Specification

The noise model is to be specified by input and 1s in the

form of:

(1) . Variances in the Spacecraft - Planet line in degrees
(2) Variance in the Read-out, also in degrees, and .
(3) Proportionality Scale factor for the variance pro-
portional to the planet's angular diameter.

L. Least Square Weighting Option (1) or (2)

This option is the same as the corresponding option for
Earth-Based Trackers (Type A Observation).

5. Least Square Weighte (fi and u&)

The weights read into the program here are in degrees.. fl
and @ refer to cone angles. fz and w, refer to clock angles
and the numerical weights follow these designations.

6. Start Time

This input in duys and decimal fraction of day nmeasured -from
Ohr launch signifies to the program the time to begin the

measurements.
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\

T End Vime \\
\

Tnis time {in days and fractiors of dey measured from O

lsunch) signifies tc the program the instant to cease meagurements.

\

8. Day Interval

This input {in days and fractions of days) plays the same

role as the correcponding input for the Eartn Based trackexrs.

Planetary Diameters (Type C Cbservations)

1. Obtservation of Planet (Choicz of one)

Tnput here will be an intzger signifying which of the 6
planets is to be selected. The planet code numbers are as given

above for clock and cone angles.
2. Diameter Limitation, X

This input in units of planetary radiil places a lower
liiitation on the size of tne planet's disc as seen from the

spacecraft,
3. Noise Model Specification

Size of the variance due to errors in the planetary diameter
measurement and constant blaes are computed from the following

inputs:

(1) A dimensionless proportionality factor, k, in the
planetary diameter added to: '

(2) A constant bias in degrees.
iy, Least Square Weighting Cption (1) ou (2)

This option is the same as the corresponding option for
Earth Based Trackers (Type A Observations).

P e

5. Least Square Weights (f and w)

This option perforns the same function as the corresponding
option for Earth Based Trackers (Type A Observations).
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Iv.

6. Measurement Option (1) or (2)
A flag here will either

(L) Begln mecasurements on time, or

(2) Begln measurements on distance from planet
" 7. Times at which measurcmorts are to be taken

Up to 30 inputs in days from launch will specify the “imes

at which measurements are to be taken.
2. Occultations (Type D Observations)

"Occultation" as used here means +he measurement of the position

of a planet's center with respect tc a star background. The inputs

are;
1. Observation of a Planet (Choice of one) - Digit codes as before.
2. Noise Model Specification ' \\
3. Least Square Weighting Uption (1) and (2) \\,
L. Least Square Weights \\\
5 Starting Day .
6. End Day | \\
7. Deay Intervals. ) ‘ _ \\

: \
ALl inputs here have the same function as the corresponding inputs for
A

the Clock and Cone Angles (Type B Ooservaticns). ;\
N

Osculating Elements of Target Planet

A. Position and Velceity (Cption 1) \

Inputs for the target planet are rectangular coordinates Xx, y, 2z,
X,'¥, 2 at time t. The units of lengch and time available are as
specified in the Initial Counditions Input.

B, Orbital Elements (Option 2)
Inputs for the target planets are given as:

a Semi-major axis
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e Bccentricity

i Inclination

9} Ascendirg Ucde

w Argument of Perigee
Mb

Mean Anomaly at Epoch

Al angles are in cegrees and arc with respect to ecliptic of‘époch
except for the moon where the orientation angles are with respect tc
the equator. The units of length avalleble for a, are as specified
in the Initial Conditions Input. '

V. Print Control Option

To spar2 the user from large amounts of unnecessary or unwanted informaticn,
options are provided to determine what type of information will be printed.
The options are chosen by entering one of the following digit codes:

Code Option
Tracking Only
Rise-Set Only
Rise-Set and Trajectory

e U . S )

Coarse Accuracy

Fine Accuracy -

\t

The conteuts ¢f these options are discussed in Appendix 9.

VI. Midcourse Maneuvers

A. Hypothetical Maneuvers
To prescribe a series of maneuvers, one must specify s
1. Start Time

Time of the first maneuver measured in days (not'necessarily
an integer) from Ohr of the initial'day.

]

2. Day Interval

Spacing of the maneuvers in days between the first and
last day.



B,

3. End Day

o ae . s n
Day of the last maneuver measured in days from O of the

initial day.
L., Namber of Compunents to be Nulled (2 or 3)

If two components are to he nulled, the maneuver vector

iles in the critical plane.

(1) Siut off error ¢
(2) Pointing error 7,
(3) Resolution error a,

(4)  Autopilot error oy
Actual Mggguve:
1. Time of ‘“ctual Maneuver
Days fiom Oh of initiss day.
2. Items 4., 5. from Option A.
Hypothetical Maneuvers Followed by an Actual,

1. Item 1. to 5. from Option A
2. Item 1. from Option B
(

Time of actual maneuver must be greater than time of last

hypothetical.)

A Priorl Variances and Covariances of Parameters

A

B,

Parameters to be Adjusted (Up to 25)

1. Uncorrelated parameters and their -rariances.

Parameter Uncertainties to be accounted for but not adjusted

1. Uncorrelated paramncters and thelr variances.

2. Covariances of correlated parameters.. (See Appendix 9, Pa-e 105.)

‘e Covariances of correlated parameters. (See Appendix 9, Page 105.)
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APPENDIX 12 PEISICSY, CONSWLANTS

The physical constants whicn a.c hullt loto the progrom eve teb iated
in this sppepdix. In addition to the ones telow, oxovital elements Jor the

' solar system are toc be found in Aprendix 2,
unit of length - 106 meters (Mm)
wnit of time - 107 seconds (ks)

moss constant of the earth - “e

u, = 398.6032 (M3 /xs%)

masa ratio of sun to earth - “s/“e

ug/u, = 332951.3

mass of sun/mass of Venus - us/uv
i /b, = 40BGkS

mass of sun/mass of Mars - ps/pM

b /i = 3088000
mass of sun/mass of Jupiter - “e/HJ

b /oy = TONT.39

mess of earth/mass of moon - ue/ﬂm

: '/“m

= 81.335



2quaterisl radtus .f earth «» &

am 6£,378165 Mn

earti's Tfiattening - T

= 263.3

earth's rotation rate - we

@y = L, 1780742 (deg/ks)

velocity of light - c

¢y = 2.99T925 % 16° (Mn/ke)

astronomicel wnit - au

au = 1.495990 x 10° Mu

sonversio. from meters to feet

1t = ,2048 meter



APPENDIX 13 - FLOW DIAGRAMS

Tnis appendix contains several flow diagrams which may be of assistance
to users of the TAPP progrem. A separate document (programmer's manual)
confaining wmore devailed flow diagrams, subroutine descriptions, storage
locations, etc. will be issued on completion of the colding and checkouf (o34
TAPP Mod I. '

Flow diegrams are included here for:

a) The Search Routine

)  Orbit Computsation Biock

c). Rise-Set Routine
~d) o-Vector Block

e) Data .Processor .

£) Azcuracy Criterion Block e
g) Midcourse Maneuver Block
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